
BACHELOR THESIS

Michal Töpfer

Components for visualization
of correlations for IVIS framework

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: prof. RNDr. Tomáš Bureš, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2020

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank prof. RNDr. Tomáš Bureš, Ph.D. for supervising this thesis
and giving me advise. I would also like to express gratitude to my family and
friends who supported me during my studies.

ii

Title: Components for visualization of correlations for IVIS framework

Author: Michal Töpfer

Department: Department of Distributed and Dependable Systems

Supervisor: prof. RNDr. Tomáš Bureš, Ph.D., Department of Distributed and
Dependable Systems

Abstract: As the number of IoT devices connected to the internet grows, the
amounts of data which need to be analysed and visualized also increase. One of
the frameworks for creating complex configurable visualizations is IVIS, a web-
based open-source framework developed at D3S, MFF UK.

In this thesis, we develop and implement components for scatter plot, bubble
plot, heatmap chart and histogram chart, which did not exist previously in the
framework. These components can be used to visualize correlations among data
and to display properties of data distribution.

Special emphasis is given to interactivity and configurability of components
and a detailed description of the configuration options is provided. We also create
a set of examples to show how to use the newly added components together
with existing parts of the framework. Existing charts in the framework are also
enhanced with the newly introduced concepts.

Keywords: data visualization, scatter plot, bubble plot, histogram, heatmap

iii

Název práce: Komponenty pro vizualizaci závislostí pro framework IVIS

Autor: Michal Töpfer

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: prof. RNDr. Tomáš Bureš, Ph.D., Katedra distribuo-
vaných a spolehlivých systémů

Abstrakt: S rostoucím počtem zařízení připojených k internetu věcí roste i množ-
ství dat, které je potřeba analyzovat a prohlížet. Jedním z frameworků pro tvorbu
všestranných a konfigurovatelných vizualizací je IVIS, který je vyvíjen na D3S,
MFF UK.

Cílem této práce je vyvinout a implementovat pro IVIS komponenty pro ko-
relační diagram (XY bodový graf), bublinový graf, histogram a 2D histogram.
Tyto komponenty se dají použít pro vizualizaci korelací v datech a znázornění
distribuce dat.

Všechny komponenty jsou interaktivní a snadno nastavitelné, přičemž možná
nastavení jsou popsána v textu práce. Použití komponent je ukázáno na několika
praktických příkladech, které mimo jiné demonstrují, jak lze komponenty prová-
zat s už existujícími částmi IVISu. Nově použité koncepty jsou také doplněny do
už existujících typů grafů.

Klíčová slova: vizualizace dat, korelační diagram, bublinový graf, histogram, 2D
histogram

iv

Contents

1 Introduction 5
1.1 Problem statement . 5
1.2 Goals . 5
1.3 Structure of the text . 6

2 Technological background 7
2.1 IVIS framework . 7

2.1.1 IVIS concepts . 7
2.1.2 IVIS installation . 8
2.1.3 Technologies used in IVIS 8

2.2 D3.js . 9
2.3 React . 9

2.3.1 JSX . 10
2.4 Elasticsearch . 10

3 Analysis 11
3.1 Visualizing data distribution properties 11

3.1.1 Categorical (discrete) data 11
3.1.2 Numerical (continuous) data 12
3.1.3 Comparing distributions 13

3.2 Visualizing data correlation . 14
3.2.1 Two signals . 14
3.2.2 Three or more signals . 15

4 Overview of the solution 16
4.1 Scatter plot . 16

4.1.1 Overplotting . 16
4.1.2 Possible configurations and extensions 17
4.1.3 User interactions . 18

4.2 Bubble plot . 18
4.2.1 Bubble size . 19

4.3 Histogram . 19
4.3.1 Bin size . 19
4.3.2 Possible configurations and extensions 20
4.3.3 User interactions . 20

4.4 Frequency distribution charts . 21
4.5 Heatmap . 21

4.5.1 Possible configurations and extensions 22
4.5.2 User interactions . 23

4.6 Correlogram . 23

5 Implementation 24
5.1 Zoom . 26

5.1.1 Two dimensional zoom . 26
5.1.2 Setting the zoom from code 27

1

5.1.3 Zoom and brush . 27
5.2 Regressions in scatter and bubble plot 27
5.3 Scatter plot data sampling . 28
5.4 Fetching data for histogram and frequency distribution charts . . 28

6 Description of components API for template designers 29
6.1 Common concepts . 29

6.1.1 Colors . 29
6.1.2 Dot shapes . 29

6.2 Common properties . 30
6.2.1 Signal configuration . 31
6.2.2 Size and margins . 31
6.2.3 CSS . 31
6.2.4 Enabling features . 31
6.2.5 Limits . 32
6.2.6 Chart axes . 32
6.2.7 Zoom . 32
6.2.8 Setting the visible region 33

6.3 ScatterPlot component . 34
6.3.1 Signal configuration . 34
6.3.2 Limits . 37
6.3.3 Dot size . 37
6.3.4 Dot color . 38
6.3.5 Chart axes . 39
6.3.6 Zoom . 39
6.3.7 Brush . 40
6.3.8 Toolbar . 40
6.3.9 Common properties . 40
6.3.10 Methods . 40
6.3.11 Advanced configuration . 41

6.4 BubblePlot component . 42
6.4.1 Signal configuration . 42
6.4.2 Limits . 43
6.4.3 Dot size . 43
6.4.4 Dot color . 43
6.4.5 Chart axes . 43
6.4.6 Zoom . 43
6.4.7 Brush . 43
6.4.8 Toolbar . 44
6.4.9 Common properties . 44
6.4.10 Methods . 44
6.4.11 Advanced configuration . 44

6.5 HistogramChart component . 44
6.5.1 Signal configuration . 44
6.5.2 Bin size . 45
6.5.3 Limits . 45
6.5.4 Chart axes . 45
6.5.5 Zoom . 45

2

6.5.6 Overview . 46
6.5.7 Common properties . 46
6.5.8 Methods . 46
6.5.9 Advanced configuration . 47

6.6 HeatmapChart component . 47
6.6.1 Signal configuration . 47
6.6.2 Bin size . 48
6.6.3 Limits . 49
6.6.4 Chart axes . 49
6.6.5 Zoom . 49
6.6.6 Overviews . 49
6.6.7 Common properties . 50
6.6.8 Methods . 50
6.6.9 Advanced configuration . 50

6.7 Frequency distribution charts . 51
6.7.1 FrequencyDataLoader component 51
6.7.2 FrequencyBarChart component 51
6.7.3 FrequencyPieChart component 52

7 Evaluation – visualization examples 53
7.1 Preliminaries . 53

7.1.1 Dataset . 53
7.2 Hans Rosling’s bubble plot . 55

7.2.1 Code description . 56
7.2.2 Adding legend . 57

7.3 Correlogram . 58
7.3.1 Code description . 58

7.4 Scatter plot with legend . 59
7.4.1 Code description . 60

7.5 Synchronized views . 60
7.5.1 Code description . 61

8 Related work 62
8.1 Grafana . 62
8.2 Kibana . 63
8.3 InfluxDB . 64

9 Conclusion 66

Bibliography 67

List of Figures 69

A Attachments 70

B Structure of source code 71

3

C User guide 73
C.1 IVIS introduction . 73
C.2 Common concepts . 73

C.2.1 Zoom . 73
C.2.2 Brush . 73
C.2.3 Tooltip . 74

C.3 Scatter and bubble plot . 74
C.3.1 Toolbar . 74
C.3.2 Loading data . 74

C.4 Histogram . 75
C.5 Heatmap . 75
C.6 Note on web browser compatibility 75

D Examples of IVIS templates 76
D.1 Creating IVIS templates . 76

D.1.1 Template parameters . 76
D.1.2 CSS styles in templates . 77

D.2 Source code – Hans Rosling’s bubble plot 78
D.2.1 JSX . 78
D.2.2 JSX – with legend . 79

D.3 Source code – Correlogram . 81
D.3.1 JSX . 81
D.3.2 SCSS . 83
D.3.3 Parameters . 83

D.4 Source code – Scatter plot with legend 84
D.4.1 JSX . 84
D.4.2 Parameters . 86

D.5 Source code – Synchronized views 86
D.5.1 JSX . 86
D.5.2 Parameters . 88

4

1. Introduction
As the number of devices connected to the internet grows, the amounts of data
which need to be analysed also increase. We can see this trend especially with the
IoT devices, cheap sensors of all kinds connected to the internet. These devices
can be set up to monitor almost anything, for example temperature, pressure,
movement and chemical reactions. In the field of Industrial IoT, the sensors can
be set up to monitor the manufacturing process and the data from them can be
analysed in real time.

When analysing data, visualizations are an indispensable tool for understand-
ing patterns, trends and outliers in them. Charts and plots are the most common
ways to create visualizations. Picking the right chart for the data is one of the
key decisions of creating a useful visualization.

There are many frameworks for creating complex configurable visualizations
of data. Some of the most known frameworks are Kibana and Grafana, which
are also mentioned later in this thesis. Another visualization framework is IVIS,
which we focus on here. This web-based open-source framework can be used to
create and display highly customized visualizations in a web browser. The IoT
sensors can also be connected to send the data directly to the framework.

1.1 Problem statement
IVIS framework provides components for some of the basic chart types, for ex-
ample line chart, area chart and pie chart. However, it lacks charts for deeper
analytics insights such as correlations among data and displaying properties of
data distribution.

For the displaying of correlations among data, scatter plot, bubble plot,
heatmap chart and other types of charts can be used. These are completely
missing in the framework.

Regarding visualizations of data distribution properties, the framework pro-
vides a basic histogram chart component. However, this component can be en-
hanced to offer more user interactions and configuration options. The histogram
can only display distribution of numerical signals, there are no components for
showing distributions of categorical data in the framework.

1.2 Goals
The goal of this thesis is to implement components for statistical charts for IVIS
framework, mainly focusing on correlation of two or more variables and visualizing
data distribution properties. In particular, the thesis will provide components for
histogram, scatter plot, bubble plot, heatmap chart (histogram of two variables),
and bar chart.

The development of these components includes analysis of their possible uses
in order to provide useful configuration options, so that they can be easily used
as a part of complex visualizations of data. The usability of the components will
be evaluated by creating example visualizations.

5

Special emphasis is given to interactivity of the plots, such as the ability to
pan and zoom in the chart. The newly introduced concepts will also be added to
the existing charts in order to provide unified user experience. For example, the
navigation in a line chart will be simplified by implementing the pan and zoom
controls introduced in the newly implemented charts.

1.3 Structure of the text
First, we briefly describe the IVIS framework and its technological background
in Chapter 2.

Chapter 3 of this thesis focuses on examples of use cases in data visualiza-
tions, which currently cannot be created in IVIS framework. We focus mainly
on visualizations of correlations among data and visualizations of properties of
distributions of the data. For each of the use cases, we propose charts which can
be used to create the visualization. We elaborate more on the proposed charts in
Chapter 4, describing possible configurations and user interactions with them.

Details about the architecture of the project and implementation of the new
components are described in Chapter 5 and structure of the source code is outlined
in Appendix B.

For IVIS admins and template creators, we provide a detailed description of
the API of the newly created components in Chapter 6. Then, in Chapter 7,
examples of the usage of these components are given. In Appendix D, we present
the source code for these examples.

Chapter 8 focuses on other frameworks which can be used for data visualizing
and on their comparison with IVIS. Namely, we compare IVIS with Grafana,
Kibana and InfluxDB.

For users who use the visualizations to look at data, a guide to the possible
interactions with the charts is given in Appendix C.

6

2. Technological background
2.1 IVIS framework
IVIS is a open-source web-based data processing and visualization framework
that provides components to setup highly customized visualizations. Visualiza-
tions can be created and then viewed from a web browser. The framework offers
visualization components (different types of charts) and other core functionalities
at the client and the server side. IVIS can be tailored for domain-specific applica-
tions through extensions. More information can be found on the project’s website
[1] and in IVIS: Highly customizable framework for visualization and processing
of IoT data [2].

2.1.1 IVIS concepts
This section provides a general description of basic IVIS concepts needed for this
thesis. For more information, including permissions system, please refer to the
project’s website [1, CONCEPTS.md].

Namespace

Namespaces are the mechanism to manage the organizational structure of the
whole project. They can be used to group entities (panels, sensors, templates, ...)
together. The user can then be granted permissions for all entities in particular
namespace. For example, we can give a user the permission to view all panels in a
given namespace. The permissions can also be granted for each entity separately.

Workspace and panels

Workspace can contain several panels and its purpose is to present visualizations
and group related panels together. Each panel contains one visualization, which
can consist of several charts and other UI elements.

SignalSet (Sensor)

SignalSet typically contains data from one source. Each signalSet is a dataset
which groups signals together. The data are saved in form of records (data points,
observations), each of which contains values for the signals in the signalSet. One
of the signals in a signalSet is usually the time of the observation, so the data
can be treated as a time series.

Signal

Signals are the columns in the dataset. IVIS supports different types of signals
including numbers (both integers and floating point numbers), strings and time
stamps.

7

Template

Templates are a method to create custom reusable visualizations in IVIS frame-
work. They can be parametrized and then displayed in panels. Each template
can be used repeatedly with a different set of parameters.

Each template consists of JavaScript code (JSX), styles (SCSS), parameters
and possibly other files. The JSX code is then compiled as a React1 component
and rendered inside a panel.

More information on template creation can be found in Appendix D and
examples of templates will be shown in Chapter 7.

2.1.2 IVIS installation
The installation procedure for CentOS 7 and Ubuntu 18.04 LTS operating systems
is described in the official documentation [1, README.md]. To install exactly the
version of the framework described in this thesis, the third step of the installation
(Download IVIS) must be altered as follows. All changes related to this thesis
are also merged into the devel branch in the SmartArch repository [1].
cd /opt
git clone https://github.com/mnaukal/ivis-core.git
cd ivis-core
git checkout --track origin/correlation_charts

2.1.3 Technologies used in IVIS
IVIS framework is built on top of several technologies from the JavaScript ecosys-
tem. The framework itself is mostly written in the modern version of ECMAScript
(standardized version of JavaScript), which introduces better variable declaration,
classes, and many other useful functionalities.2

Following technologies are used in the framework [1]:

• Frontend:

– User Interface: React
– User Interface Design: Bootstrap
– Visualizations: D3.js

• Backend:

– IVIS routes, and API: Node.js
– Database: MySQL
– Indexing & Searching: Elasticsearch
– Security: Passport

As the goal of this thesis is to implement components for the framework, it
uses the same core technologies. However, not all of them were directly needed
during the development. The rest of this chapter describes the most important
technologies for this thesis in more detail.

1React and JSX will be discussed later in this chapter in Section 2.3.
2Engelschall [3] describes ECMAScript features in more detail.

8

2.2 D3.js
As described on the official website [4]:

D3.js is a JavaScript library for manipulating documents based on
data. D3 helps you bring data to life using HTML, SVG, and CSS.
D3’s emphasis on web standards gives you the full capabilities of mod-
ern browsers without tying yourself to a proprietary framework, com-
bining powerful visualization components and a data-driven approach
to DOM manipulation.

The D3.js library allows to bind data (often from JS array) to the Document
Object Model (DOM) and create new HTML or SVG elements based on the
items. It also efficiently handles modification of the source data and updates the
corresponding elements (or adds new or remove unnecessary ones if needed).

The elements can be modified in various ways. The most used technique
in this thesis is modification of attributes of the SVG elements using the attr
function. When calling the attr function, a function can be specified, which
will be evaluated for each item and the corresponding element’s attribute will be
set to the returned value. Similarly, styles, inner text and inner HTML of the
elements can be also set.

On top of all this, D3.js contains a large library of modules for specific pur-
poses, which can be utilized during development. The most important modules
for this project are

d3-array functions for array manipulation,
d3-scale mapping a domain to a range (for example using linear scale),
d3-axis chart axes with marks in human readable form,

d3-zoom pan and zoom using mouse or touch input,
d3-brush region selection using mouse or touch,

d3-transition animated transitions of data modification.

2.3 React
React is a JavaScript library for building user interfaces, which is developed
and used by Facebook. It is component-based, which means that it encourages
the developers to create encapsulated components that manage their own state
and logic. The components are then combined together to create complex user
interfaces. More information can be found in the official documentation [5].

Each React component can have properties (props), which are set from out-
side of the component, usually by a parent component. It can also manage its
own state (in the state variable set by the setState method) and then use the
values saved in the state for example as the properties to a child component.
The library takes care of changes of props and state and updates the necessary
parts of DOM and calls callback functions (componentDidUpdate method), so
the component’s logic can react to the changes.

Components in IVIS-CORE project are created as React components.

9

2.3.1 JSX
It is common to use JSX syntax in React. It is an extension to JavaScript
syntax which allows writing HTML-like tags directly inside JS code without using
any quotation marks or other notation. As an example, consider this variable
declaration:

const element = <h1>Hello, world!</h1>;

It produces a React element, which can later be rendered to the DOM. React
components usually return JSX from their render method. The tags used in
JSX can be HTML tags, but also other React components.

2.4 Elasticsearch
Elasticsearch is a distributed search and analytics engine. It can efficiently store
and index all types of data in a way that supports fast searches. Apart from
simple data retrieval, it can also perform complex aggregations over the data to
discover trends and patterns or to summarize the data.

Specifically for this project, histogram aggregation and the ability to return
random samples of the dataset are key features of Elasticsearch. Another feature
important for IVIS-CORE framework is fast filtering of time series data (selecting
data indexed in time order based on a range of time). More about all features of
Elasticsearch can be found in official documentation [6].

10

3. Analysis
While IVIS has some components for visualizing time-series data, predominantly
in the form of a line chart, it lacks visualization components for deeper analytics
insights such as correlations among data. This chapter focuses on common use
cases in data visualization, which cannot be created using only the components
currently available in IVIS framework.

For these example use cases, we propose charts which might be used to create
such visualizations. Detailed description of the suggested charts and discussion
about their implementation as IVIS components is provided in Chapter 4.

Here is a list of visualization use cases we focus on in this chapter with links
to the sections, in which they are described in detail, and example figures:

• properties of distribution of discrete data (3.1.1, Figure 3.1),

• properties of distribution of continuous data (3.1.2, Figure 3.2),

• comparing distributions of data (3.1.3, Figure 3.3),

• correlation of two signals (3.2.1, Figure 3.4),

• correlation of three or more signals (3.2.2, Figure 3.5).

3.1 Visualizing data distribution properties
When working with a signal, only knowing its minimum, maximum and mean is
usually not enough to determine enough about the data. We often want to know
the distribution of the values of the signal. That is, we want to see how frequent
are all the possible values of the signal.

For each of the possible values in the range of the signal, we can compute how
many times does this value occur in the data. Visualizations of these counts can
be done differently based on the type of the data we work with.

3.1.1 Categorical (discrete) data
Discrete data have a limited number of possible values. We can usually treat
these values as categories. An example of a discrete data signal would be current
weather condition with values such as “Sunny”, “Cloudy”, “Rain” and “Snow”.

As there are only finitely many possible outputs, we can compute frequency
of each output. Then, we create frequency distribution, which is a list of the
possible outputs, each with a count of its occurrences in the data. Instead of
count, we can also display the relative count (percentage).

The number of categories is usually small, so we can visualize the frequency
distribution using a pie chart or a bar chart. For higher number of categories
with similar frequencies, lollipop chart might be more appropriate than a bar
chart in order to prevent Moiré effect, as discussed by Holtz [7, Lollipop chart]
and in Data Viz Project [8, Lollipop chart]. Section 4.4 of the next chapter gives
more information about bar charts and pie charts in IVIS.

11

A complete example of a visualization of discrete data are results of an elec-
tion. They are usually presented using a bar chart, sometimes also using a pie
chart. Figure 3.1 shows results of elections1 visualized using bar chart.

29.64%

11.32% 10.79% 10.64%

7.76% 7.27%
5.80% 5.31% 5.18%

ANO ODS Piráti SPD KSČM ČSSD KDU-ČSL TOP 09 STAN

Figure 3.1: Bar chart showing results of elections. Created in Microsoft Excel
based on data from Czech Statistical Office.

3.1.2 Numerical (continuous) data
For continuous data, such as real numbers, we usually cannot count each different
output separately, because theoretically there can be a infinite number of them.
In practice, we only work with finite datasets, but the problem remains. It rarely
happens that we have the same value more than once. On the other hand, these
values can often be really close to each other so visualizing each of them separately
would yield only in a confusing overplotted chart.

Solution to this problem is to group similar values together. Is it usually
done by creating disjunct bins (sometimes called buckets) across the range of the
variable. Then, each sample is counted to the bin it belongs to. Counts in bins
are then visualized using a histogram chart, i.e. a bar chart without padding
around bars and with a continuous x-axis. More details about histogram chart
can be found in the next chapter in Section 4.3.

When the bin size is small and the top sides of the bars are smoothed, we call
this chart a density plot. We focused on the histogram chart; implementation
of the smoothing for density plot is beyond scope of this thesis.

As an example of visualization of distribution of continuous data, we provide
a histogram showing wind speed (red) and generated energy (blue) for all of 2002
at the Lee Ranch facility in Colorado. This histogram is displayed in Figure 3.2.

1Elections to the Chamber of Deputies of the Parliament of the Czech Republic held on 20
– 21 October 2017, data downloaded from website of Czech Statistical Office (https://volby.
cz/), showing only results of parties which got at least 5% of the votes.

12

https://volby.cz/
https://volby.cz/

wind speed (m/s)

ho
ur

s

M
W

h

energy
frequency

800

700

600

500

400

300

200

100

0
0 5 10 15 20 25

file:///C:/Dropbox/skola/baka/ivis-thesis/img/Lee_Ranch_Wind_Spee...

1 z 1 01.04.2020 11:21

Figure 3.2: Histogram showing distribution of wind speed and generated energy.
Source: Wikimedia Commons, User: Saperaud, CC-BY-SA license.

3.1.3 Comparing distributions
One way of comparing distributions of more signals is to plot them into the same
histogram, density plot or other chart. This, however, can lead to a overcluttered
chart when comparing too many distributions. Holtz [7, Too many distributions]
recommends using other types of charts for this, such as box plot (shown in
Figure 3.3), violin plot and ridgeline plot, or drawing the distributions in
smaller separate charts. These plots are beyond scope of this thesis and we did
not implement them. Thus they are not described in more detail in the next
chapter. More information about them can be found for example in From Data
to Viz [7] and Data Viz Project [8]. https://upload.wikimedia.org/wikipedia/commons/0/0b/Boxplot_of_Av...

1 z 1 01.04.2020 13:00

Figure 3.3: Boxplot comparing results of Article Feedback research. Source:
Wikimedia Commons, User: Protonk, CC-BY-SA license.

13

https://commons.wikimedia.org/wiki/File:Lee_Ranch_Wind_Speed_Frequency.svg
https://commons.wikimedia.org/wiki/File:Boxplot_of_Average_Article_Feedback_ratings_by_project_rated_quality.svg

3.2 Visualizing data correlation
Apart from observing distribution of one signal at the time, we might also want
to compare two or more signals to see if they are related. That is to tell whether
values of one signal depend on values of the other. The statistical relationship
between two signals is called correlation.

3.2.1 Two signals
IVIS currently allows to display two lines in a line chart at the same time, but
this approach has problems when the data do not have the same range. We can
use two separate axes in the line chart, but this can be misleading as we can
choose the scales arbitrarily. More on this topic can be read in Lisa Charlotte
Rost’s blog post in Chartable [9]. The line chart in IVIS can also display only
time series data (the x-axis is always time), so we cannot visualize correlation of
signals without time stamps.

A better way to display correlation of two signals is to use two perpendicular
axes, each with its own scale. The most common way to visualize the data is to
plot a dot into the chart for each data point. The dot’s x-position is defined by
one of the signals and its y-position is defined by the other. The resulting chart
is called scatter plot and we again provide more details about it in Section 4.1.

An example of scatter plot showing data about eruptions of the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA is shown in Figure 3.4. We
can observe that there is a positive correlation between the waiting time and
eruption duration (for longer waiting time, we get longer lasting eruptions).

Figure 3.4: Waiting time between eruptions and the duration of the eruption
for the Old Faithful geyser in Yellowstone National Park plotted in scatter plot.
Source: Wikimedia Commons, User: Maksim, Public Domain.

Another way of using two perpendicular axes is a heatmap, which is a two
dimensional equivalent of a histogram or frequency distribution chart. Bins are
created along both of the axes and the counts of occurrences in each bin are

14

https://blog.datawrapper.de/dualaxis/
https://commons.wikimedia.org/wiki/File:Oldfaithful3.png

represented by different colors. This chart is better for displaying correlations
of discrete signals, as there are usually small number of categories and all dots
for one category would be on a same vertical or horizontal line in a scatter plot.
Furthermore, if both of the signals are discrete, then all the dots representing the
same values of both signals lie on top of each other and therefore are not visible.
More details about heatmap can be found in Section 4.5.

3.2.2 Three or more signals
Sometimes, we want to visualize correlation of three or more signals. This can be
done by using a third perpendicular axis in scatter plot, but displaying three
dimensional chart on two dimensional computer screen can be misleading.

We can add additional dimensions to scatter plot by using color or size of the
dots. These approaches can also be combined to create a chart which can display
four signals at the same time.

Colors of dots in scatter plot can be used for example to distinguish data points
by their category defined by a discrete signal (different color for each category).
Numerical signals can also be displayed using a continuous color scheme.

Bubble plot is a variant of scatter plot where size of the dot is determined
by additional signal. More details can be found in the next chapter in Section 4.2.

Combination of these approaches can be found in Figure 3.5 which shows a
bubble plot of life expectancy and income of world nations with dots colored
based on the region of the country.

DATA SOURCES—INCOME: World Bank’s GDP per capita, PPP (2011 international $). Income of Syria & Cuba are Gapminder estimates. X-axis uses log-scale to make a doubling income show same distance on all levels. POPULATION: Data from UN Population Division. LIFE EXPECTANCY: IHME GBD-2015, as of Oct 2016.
ANIMATING GRAPH: Go to www.gapminder.org/tools to see how this graph changed historically and compare 500 other indicators. LICENSE: Our charts are freely available under Creative Commons Attribution License. Please copy, share, modify, integrate and even sell them, as long as you mention: ”Based on a free chart from www.gapminder.org”.

$1 000 $2 000 $16 000$4 000 $8 000 $32 000 $64 000 $128 000

LEVEL 2LEVEL 1 LEVEL 3 LEVEL 4INCOME LEVELS

50
6

0
55

70
6

5
80

75
85

INCOMEPOOR RICH

version 15

apminder World 2015

India

Japan

Indonesia

Spain

Vietnam

Ethiopia

Congo
Dem. Rep.

Czech Rep.

South Africa

Sudan

Tanzania

Switzerland

Mali
Burkina Faso

Madagascar

Slovak Rep.

Uganda

Kenya

Norway

Cameroon

Guinea

Ghana

Zimbabwe

Niger

Cote d'Ivoire

Bosnia & Herz.

Senegal

Burundi

Rwanda

Moldova

Benin

Sierra Leone

Chad

Lao

Papua N. G.

Malawi

Tajikistan

Togo

Maced F.

Dominican R.

Eritrea

Nicaragua

Liberia

Honduras

Congo, Rep.

Mauritania

Oman

Trinidad & Tobago

Singapore

Gabon

Palestine

Guyana

Monten.

Luxembourg

Gambia

Fiji

Comoros

Equatorial
Guinea

Kuwait

Solomon Isl.

Djibouti
Kiribati

Micronesia

Brunei

Seychelles

Mars. Isl.

Andorra

United Arab Em.

Central African Rep.

Somalia

Guinea-Bissau

Mozambique

Afghanistan

Lesotho

Haiti

North Korea
Timor-Leste

Nepal

Bangladesh
Kyrgyz Rep.

Cambodia

Swaziland

Pakistan

Nigeria

USA
Saudi Arabia

Russia

Egypt

Philippines

Italy

France
Australia
Sweden

Ireland
Netherlands
GermanyAustria

BelgiumDenm.

UK
Finl.

N. Zeal.

South Korea
Sloven.

Greece

Portugal

IsraelMalta
Cyprus

Iceland

Algeria

Brazil

Mexico
Argentina

Malaysia

Azerbaijan

Suriname

Belarus

Costa Rica

Maldives

South Sudan

Zambia

Vanuatu

Myanmar
SyriaSao T & P

Uzbekistan
Tonga

Samoa
Bolivia

Cape Verde
Georgia

Guatemala
Bhutan

Ukraine

Belize

St.V&G
Grenada

Morocco Armenia
El Salvador Jamaica

Paraguay
St. Lucia

Dominica

Ecuador

Sri Lanka
Albania

Tunisia

Jordan

Colombia

Peru

Serbia
Barbados

Lebanon

Turkey

Thailand
Iran

Venezuela
Bulgaria

Libya
Mauritius

Romania
Latvia Lithuania

Bahamas

Kazakhastan

Iraq

Namibia

Mongolia

Uruguay
Croatia

PanamaCuba

Chile

Poland

Hungary

Estonia

Antig.& B.

Puerto
Rico

Bahrain

Aruba

Angola

Qatar

Turkmenistan

Canada

Bermuda

Yemen

China

COLOR BY REGION

SIZE BY POPULATION

www.gapminder.org

1 10
100

1 000
million

This graph compares
Life Expectancy & GDP per capita

 for all 182 nations
recognized by the UN.

a free fact-based worldview

HEALTH & INCOME
OF NATIONS

IN 2015

H
EA

LT
H

SI
C

K
H

EA
LT

H
Y

Li
fe

 e
xp

ec
ta

nc
y

(y
ea

rs
)

GDP per capita ($ adjusted for price differences, PPP 2011)

Figure 3.5: Bubble plot showing the life expectancy and income of 182 nations
in the year 2015. Each bubble is a country. Size is population. Color is region.
Source: Gapminder, CC-BY license.

A completely different way of visualizing correlations of more than two signals
is correlogram. It consists of several scatter plots, one for each pair of the
signals. Correlogram is described in more detail in Section 4.6.

15

https://www.gapminder.org/downloads/updated-gapminder-world-poster-2015/

4. Overview of the solution
In this chapter, we elaborate on charts proposed in Chapter 3 by providing a
more detailed description of them. We focus only on charts implemented in this
thesis. For each chart, possible component configurations and user interactions
are reviewed (these are the configurations we considered before implementing the
charts, the lists do not aim to be exhaustive). References to Chapter 6, which
describes details about the API of implemented components, are also given.
Namely, we talk about the following charts:

• scatter plot (4.1),
• bubble plot (4.2),
• histogram (4.3),
• frequency distribution charts (4.4),
• heatmap (4.5),
• correlogram (4.6).

Additional information about the charts described throughout this chapter
more images can be found for example in From Data to Viz [7] and Data Viz
Project [8].

4.1 Scatter plot
A scatter plot is a chart which displays the relationship between two numerical
signals. Each data point is represented by a dot in the chart. The value of the
first signal determines the horizontal position of the dot and the second signal
determines the vertical position.

The scatter plot was implemented as a ScatterPlot component as a part of
this thesis. See Section 6.3 for details about the API of the component.

4.1.1 Overplotting
One of the problems of scatter plot can be overplotting, which means that there
are too many dots in the chart so they start to form clutters and are not distin-
guishable anymore. Possible solutions are discussed for example by Holtz [7, How
to avoid overplotting]. Three of them have been decided to be implemented in
scatter plot in this thesis: data sampling, configurable dot size and configurable
dot transparency.

The most important method to avoid overplotting is to sample the data, i.e.
to show only a part of the whole dataset. The scatter plot implemented in this
thesis has a configurable limit of the maximum number of data points shown in
chart. The data are sampled randomly from the dataset. The scatter plot is also
implemented in such a way that the size and color (including transparency) of
the dots can be changed.

16

0 20,000 40,000 60,000 80,000 100,000

Income per person

35

40

45

50

55

60

65

70

75

80

85

Li
fe

 e
xp

ec
ta

nc
y

Figure 4.1: Scatter plot.

Another way to overcome overplotting is to use a heatmap chart instead of
scatter plot. More details about heatmap chart can be found in Section 4.5 of
this chapter.

4.1.2 Possible configurations and extensions
Here comes a list of configurations and extensions of scatter plot which we con-
sidered implementing in this thesis. For those really implemented, please see
Section 6.3.

Signals

It is clear that we want to be able to configure the signals displayed along the
axes. For scatter plot, only numerical signals can be used. Both of the signals
also have to be from the same signalSet, so that we always have pairs of values.

The domain of each of the axes can be inferred from the data or set to a
specified range.When computing domain from the data, we may either use only
the records in the sample plotted in the chart, or we can use the minimum and
maximum of the whole dataset (including the records which were not chosen to
be displayed). The latter option gives us a better overview of the data, but there
might not be any dots in outer part of the rendered chart.

Dots

There are a few possibilities of configuration of the dots displayed in the chart.
First of all, their shape can be set by the creator of the visualization. We imple-
mented a few different shapes, which are listed in Section 6.1.2. Another aspect

17

of dots, which should be configurable is the size (radius).

Color

As mentioned earlier, we want the color of dots to be configurable by the creator
of the visualization. In the simplest case, all dots will have same color.

The dots can also be colored based on another variable. This can be done both
for discrete variable (color for each category) and continuous variable (continuous
interpolation between colors).

Regressions

Regressions can be added to see the trends in the data. For instance, linear
regression tries to predict how the values along the y-axis depend on the values
along the x-axis using a linear function. This model can then be rendered as a
straight line in the chart. More advanced regression models can also be used.

4.1.3 User interactions
Zoom and selecting a region

When the user wants to see patterns in the data, enlarging a region of the chart
might help them. One of the possible interactions is using mouse wheel or touch
for zooming in and out and moving the view.

Other way to implement zoom is allow user to draw a region in the chart using
his mouse and then display exactly the selected region of the chart. We call the
region selection brush later in this thesis.

Tooltip

Tooltip with additional information can be shown to the user. It should contain
details about the dot which is the closest to the user’s cursor.

Time interval selection

IVIS framework contains a TimeContext component which allows user to select a
specific time range. The data can then be filtered to contain only records within
the defined time range. Newly implemented charts should be able to cooperate
with this component and filter data based on the selected time interval.

4.2 Bubble plot
A bubble plot is an extension of the scatter plot, so all the information written in
Section 4.1 are also relevant here. Additionally, Section 6.4 enumerates features
implemented in the BubblePlot component.

Bubble plot allows to visualize an extra signal. The additional signal is rep-
resented through the size of the dots.

As written by Holtz [7], the problem with bubble plot is that the relationship
between the signals represented by the x- and y-axes is much more obvious than

18

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

40

45

50

55

60

65

70

75

80

1963-10-03 01:00:00 to 1976-03-04 01:00:00

Figure 4.2: Bubble plot.

the relationship with the third signal. It is thus crucial to decide which signal
should be represented by which axis.

4.2.1 Bubble size
It is the area of the bubble which is perceived by the user, not its radius. We
must thus scale the area according to the signal’s value and the radius according
to the square root of the value. Example of a bad use of area of a circle can be
found in Holtz [7, Scaling to radius or area?].

4.3 Histogram
Histogram is a graphical representation of the distribution of a numerical signal.
First, the range of the signal is divided into disjunct bins. Then, we count how
many observations fall into each of the bins. These counts are represented by the
height of the corresponding bar in the chart.

The HistogramChart component existed in IVIS framework, but it lacked
some of the features mentioned below. The component’s API is described in
Section 6.5.

4.3.1 Bin size
The size of the bins can matter a lot as when the bins are too big, we don’t see
much information about the data. On the other hand, too small bins are hard

19

2010-01-01 00:00:00 to 2010-12-31 00:00:00

fertility_rate

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Fertility rate

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

Select

Figure 4.3: Histogram.

to visualize, because the bars representing them are too narrow. Furthermore,
when using really small bins, it is quite likely that a lot of them will be empty.
The problems with bin size are discussed more for example by Holtz [7, Play with
your histogram bin size]. The bin size does not have to be same for all the bins.

4.3.2 Possible configurations and extensions
Here comes a list of possible configurations of the histogram chart considered for
this thesis. For those implemented, please see Section 6.5.

Signal

Obviously, we want to be able to choose the signal, whose distribution we want
to see. This feature is already available in IVIS framework and it currently allows
to show distribution of only one signal at the time.

Bin size

One of the key aspects of creating a good histogram chart is to choose a reasonable
bin size. The component currently implemented in IVIS handles this in two ways.
It allow the programmer to set the minStep, which is the minimal size of the bins
(the minimal difference between the endpoints of the bin’s interval).

The other approach is to set the minimal width of the bars in pixels. By that,
the histogram is always optimized for the current width of the screen.

4.3.3 User interactions
Zoom and selecting a region

Selecting part of the chart to see the distribution of the signal in a certain range
can be really useful. It helps for example to filter out outliers. When we have an
outlier value, which differs significantly from most of the values, it can increase
the range of the variable. Histogram chart will be then rendered for the increased
range, which effectively means that the bins will be wider. As a result, the

20

part of the chart containing the outlier will be mostly empty. Furthermore, the
interesting part, where most of the data points are, will be compressed to a
smaller number of bars and therefore show less information.

Allowing the user too zoom in and then reloading more detailed data for the
currently visible region of the signal’s range solves this problem. We must adapt
the bin size to the level of zoom. This feature was missing in the HistogramChart
component in IVIS and has been implemented as a part of this thesis.

There can be several methods how to enable the zoom interaction for the user.
The simplest one is using mouse wheel (or pinch gesture on touchscreen devices)
for changing the scale and mouse drag for panning.

Similarly to other components, we also proposed a more precise way of se-
lecting the desired region. We do this by drawing an overview below the main
histogram. The overview is a smaller histogram which is not changed when the
user alters the visible region. Instead, a rectangle is drawn on top of the overview
to indicate, which part of the chart is currently visible. The sides of the rectangle
have handles which can be used to modify the visible region.

Tooltip

Tooltip with additional information can be showed to the user. It should contain
details about the bin below the user’s cursor.

Time interval selection

See Section 4.1.3.

4.4 Frequency distribution charts
The aim of these charts is to display distribution of a discrete signal, that is how
frequent is each of the possible outputs. As discussed in Section 3.1.1, this is
commonly visualized using a pie chart or a bar chart.

The StaticPieChart component already exists in IVIS, so we decided to
implement only the loading of the data and then display them using the existing
component. StaticBarChart component with similar interface to StaticPie-
Chart was added as another option to display the frequency distribution.

The components for displaying frequency distribution are called Frequency-
PieChart and FrequencyBarChart. Description of API of these components can
be found in Section 6.7.

4.5 Heatmap
Heatmap, sometimes called 2D density plot, is a two dimensional version of the
histogram chart. It creates bins for both of the axes and computes number of
occurrences of signal values in each rectangle defined by bins. Then, the counts
are displayed through the color of each rectangle.

Heatmap was implemented as HeatmapChart component. Its API is described
in Section 6.6.

21

35 40 45 50 55 60 65 70 75 80

Life expectancy

asia

africa

europe

americas

35 40 45 50 55 60 65 70 75 80

2003-10-30 00:00:00 to 2016-04-01 00:00:00

Figure 4.4: Heatmap.

4.5.1 Possible configurations and extensions
Here comes a list of possible configurations of heatmap with short descriptions.
For those implemented in this thesis, please see Section 6.6.

Signals

As in other charts, we want be able to configure which signals are shown along
each of the axes. This time, the implemented HeatmapChart component works
with both numerical and discrete signals.

Bins

As in histogram (see 4.3.2), setting a reasonable bin size is crucial to creating good
visualization. Size of the bins should be configurable for each axis separately as
they don’t have to use the same scale. The bins in heatmap can also have different
shapes than rectangles. Heatmaps with hexagonal bins are quite common.

Colors

The readability of this type of chart depends heavily on the choice of the colors.
It should be clear for the user which bins have the most and the least occurrences.
Specifying a color scheme with more than two colors can help that. More on color
scheme choices can be found in Chartable [9, What to consider when choosing
colors for data visualization].

Marginal histograms

Marginal histograms are histograms placed around the chart parallel to the axes.
They show the distribution of values for each signal separately.

22

4.5.2 User interactions
Zoom and selecting a region

As described in Section 4.3.3, being able to zoom to a specific region of the chart
is quite useful. Again, this should be possible for each axis separately for the
best user experience. To manage this, we propose adding overviews (as described
in the last paragraph of 4.3.3) to both of the axes, serving also as marginal
histograms mentioned earlier.

Tooltip

Tooltip with additional information can be shown to the user. It should contain
details about the bin (rectangle) below the user’s cursor.

Time interval selection

See Section 4.1.3.

4.6 Correlogram

Fertility rate

0 20,000 40,000 60,000 80,000 100,000 120,000

1

2

3

4

5

6

7

35 40 45 50 55 60 65 70 75 80

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000
110,000
120,000

Income per person

35 40 45 50 55 60 65 70 75 80

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000
110,000
120,000

1 2 3 4 5 6 7

35

40

45

50

55

60

65

70

75

80

85

0 20,000 40,000 60,000 80,000 100,000 120,000

35

40

45

50

55

60

65

70

75

80

85

Life expectancy

Figure 4.5: Correlogram.

Correlogram (sometimes called scatter plot matrix) is a chart which consists
of several scatter plots. It can visualize correlation among more than two signals
by creating a scatter plot for each pair. For k signals, k rows and k columns are
created. The plot located at the intersection of the i-th row and the j-th column
renders the i-th signal along its y-axis and the j-th signal along its x-axis. Also,
a separate histogram for each of the signals can be added.

Correlogram is not implemented as a component in this thesis, but a simple
version of it is shown as one of the examples in Chapter 7 (Section 7.3).

23

5. Implementation
The following components were implemented as a part of this thesis. API of the
most important ones is described in Chapter 6. Structure of the source code files
is described in Appendix B.

• ScatterPlot (6.3),
• BubblePlot (6.4),
• HistogramChart (6.5),
• HeatmapChart (6.5),
• FrequencyDataLoader, FrequencyBarChart, FrequencyPieChart (6.7),
• ScatterPlotBase – common component for ScatterPlot and BubblePlot,
• StaticBarChart – bar chart with data specified directly in config (not

queried from the server),
• MinMaxLoader – loads the minimum and the maximum of given signal.

We first provide a brief look at the architecture of the IVIS framework in
figure 5.1. In the following sections of this chapter, we focus on main concerns
which are common across components and pose a greater technical challenge.

The main interest of this thesis is in creating new components for charts to
be used in templates. Figure 5.1 only shows parts of the framework relevant to
that.

These newly created components are highlighted as yellow squares labelled
“Visualization component” in the figure. Some modifications in other parts of
the project were also needed to be made in order for new components to work.
For example, random sampling of data for scatter plot (described in Section 5.3)
and fetching data distribution for discrete signals (5.4) were added to the Indexer.
These modified parts are marked with a yellow dotted border.

Visualization components are used inside a template, which is the code written
by visualization creator. The creator can simply use the components as they are,
or combine them using additional JavaScript code. Each template can also have
parameters, which can be specified when it is used.

Templates are displayed in panels. One template can be displayed in more
than one panel, each time with a different set of parameters.

The data for most of the visualization components are retrieved from the
server through the DataAccess component. This component sends the queries
to the server, where they are first checked in the Model and then translated to
Elasticsearch queries inside the Indexer.

The inner structure and lifecycle of the visualization components is derived
from the lifecycle of the components in React. The two most important methods
are fetchData and createChart.

The fetchData method loads the data from the server through the DataAc-
cess component. When the data are loaded, they are stored in React’s state
variable.

Each update of the state or the properties causes componentDidUpdate
method to be called in React. In our visualization components, the createChart
method is then called to update the chart.

24

C
lie

nt
 (W

eb
 b

ro
w

se
r)

Authentication, administration,
etc. not relevant to this thesis

Pa
ne

l

Te
m

pl
at

e

Visualization
component

Visualization
component

DataAccess

Se
rv

er

Router

Model

Indexer

MySQL

Elasticsearch

Authentication,
etc. not relevant

to this thesis

Parameters

REST API

...

Figure 5.1: IVIS framework architecture.

25

5.1 Zoom
The zoom in all components is implemented using d3-zoom, which is a part of the
D3.js library. It provides tools for both handling the user input (such as mouse
wheel, mouse drag and touch gestures) and the manipulation of the data before
drawing them. We recommend visiting its documentation [10] if some parts of
this section are not clear.

The essential code for zoom is implemented in the createChartZoom method
in all the charts. We create a d3Zoom.zoom object and set all the desired extents,
which restrict the panning and prevent the user from moving outside of the chart,
and the event handlers.

When the user changes the zoom, the zoomTransform value gets updated in
the component’s state. In this value, the current scale factor and the x and y
translation of the visible region are stored. The zoom transform is later used to
rescale the axes of the chart. We can imagine this as enlarging the original chart
area by the scale factor, then moving it by the translation offsets and cropping
it back to the original area so that everything drawn outside is not visible. The
rescaling of the axes does exactly that and produces the axes for the transformed
region.

Figure 5.2 shows examples of rescaling of the axis. The numbers along the
bottom of the squares are the domain of the axis; the numbers along the top
of the squares are the range of the axis. The left picture shows the initial state
(identity transform). In the middle picture, everything is enlarged by factor 1.5
(the top left corner has coordinates (0, 0), so that is the point which stays at the
same place). In the right picture, we also add a translation by 75 to the left,
so the final transformation along horizontal axis can be represented by function
t(x) = 1.5 · x − 75.

Figure 5.2: Rescaling of the axis.

5.1.1 Two dimensional zoom
The library unfortunately does not support zoom along two axes simultaneously.
The zoomTransform has only one scale factor value. Our implementation of the
two dimensional zoom using the d3-zoom library is described in this section.

Alongside the zoomTransform, we also save the zoomYScaleMultiplier vari-
able. It can be interpreted as the ratio between the zoom factor along the y-axis

26

https://github.com/d3/d3-zoom

and the zoom factor along the x-axis. When creating the chart axes, the x-axis
is rescaled exactly the same way as for one dimensional zoom. For rescaling the
y-axis, the zoomTransform is first scaled up by the zoomYScaleMultiplier. This
creates a zoom transform whose scale factor is the product of the scale factor of
the original zoomTransform and the zoomYScaleMultiplier. We then use the
modified zoom transform to rescale the y-axis.

One last thing which is needed to be done is updating the extent so that
it allows the user to move up and down along the whole range of the y-axis.
This is done by multiplying the vertical size of the translateExtent by the
zoomYScaleMultiplier.

5.1.2 Setting the zoom from code
We use the setZoomToLimits method to set the boundaries of the visible region.
Setting the zoom transform from code is quite straightforward. We set the scale
factor to the ratio between the width of the chart and the width of the desired
region. The translate values are then computed so that when the transformation
is applied to the top left corner of the desired region, the result is the origin, i.e.
the point with coordinates (0, 0).

5.1.3 Zoom and brush
Existing components of the framework were also enhanced with the zoom func-
tionality. We added this to the TimeBasedChartBase component, on top of which
the line chart and area chart are built.

These components previously used mouse drag for selecting a region using
brush (drawing a rectangle with the mouse button held down). The brush was
edited to be enabled only when a control key is held. The same behaviour is used
in the scatter and bubble plot.

5.2 Regressions in scatter and bubble plot
The statistical regressions, which can be displayed in scatter plot, are imple-
mented using d3-regression library. This library was chosen because of its
compatibility with the rest of the D3.js framework, especially its ability to pro-
duce the regression line in format accepted by the D3.js line generator, which
then converts it to an SVG path.

The regressions are computed inside the createRegression method in Scat-
terPlotBase when new data are fetched. The computation of regressions might
significantly increase the loading time of the chart.

All regression types provided by the library are supported: linear, quadratic,
polynomial (with configurable degree of the polynomial), exponential, logarith-
mic, power law and LOESS regressions.

27

https://github.com/HarryStevens/d3-regression

5.3 Scatter plot data sampling
The ScatterPlotBase component has a maxDotCount property which limits the
maximum number of dots in the chart. This is done in order to reduce the amount
of data transferred from the server to the client and to prevent overplotting1 as
there might be thousands of records.

This is implemented by specifying the function_score to random_score in
the Elasticsearch queries. A random number is assigned to each of the records
and then those with the highest numbers are retrieved (the number of retrieved
records is limited by the maxDotCount). We do not specify the seed in the queries,
so the fetched records are different every time.

5.4 Fetching data for histogram and frequency
distribution charts

When fetching data for histogram, heatmap and frequency distribution charts,
the Elasticsearch aggregations are used. For heatmap chart, the aggregations are
nested, so that we get two dimensional array of buckets (bins) as the result.

For numerical data, we use the Histogram aggregation. The size of the buckets
is computed on the server side but can be influenced using properties listed in
Section 6.5.2 for histogram and in Section 6.6.2 for heatmap. This was already
present in IVIS before this thesis.

For discrete data (keyword type in IVIS), the Terms aggregation is used. It
returns the counts of unique values of the signal. By default, it only returns the
10 most frequent unique values, but the limit can be increased (that is done for
example in FrequencyDataLoader). The Terms aggregation was added to IVIS
as a part of this thesis.

For all types of data, the histogram query can be used from the client. The cor-
rect aggregation is determined by the server depending on the type of the signal.
Both HistogramChart and HeatmapChart use the getLatestHistogram method
from DataAccessSession (part of DataAccess). The FrequencyDataLoader
uses a more general "aggs" query with aggregation type set to Terms.

The returned values differ slightly for the two types of data, although both
contain buckets array with the aggregated bins (each with key and count). For
Histogram aggregation, the computed bin size (step) is returned. For Terms ag-
gregation the doc_count_error_upper_bound and sum_other_doc_count values
specified in the documentation linked above are also returned.

1Overplotting was discussed in Section 4.1.1.

28

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html#function-random
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-histogram-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html

6. Description of components
API for template designers
This chapter contains documentation of the components’ API for template cre-
ators and programmers, who will use them for building visualizations. We chiefly
describe the public properties and methods of the components. To see examples
of usage of these components, please read Chapter 7.

Throughout this whole chapter, properties marked with * have already been
described earlier (with the asterisk linking to the description). Properties marked
with † are required and the component won’t work properly without them.

Later, properties of the components will be listed. Property descriptions have
this format:

property name (property type) [default value]

6.1 Common concepts
6.1.1 Colors
When later sections of this chapter talk about colors, the colors created by d3-
color library are meant. Here are some examples of how a color can be created
using this library:

import * as d3Color from "d3-color";

const fromName = d3Color.color("red");
const fromHex = d3Color.color("#ffe000");
const fromRGB = d3Color.rgb(255, 0, 0);
const fromRGBA = d3Color.rgba(255, 0, 0, 0.5);
const fromD3color = d3Color.color(fromName);

Usually, the color can also be specified in the component’s properties by using
only the string as most of the components call d3Color.color method inside
them.

For more information, see appropriate section of D3.js documentation [10].

6.1.2 Dot shapes
The term dot is used in this documentation for visualization of one data point
(record), for example in scatter plot. Dot can be represented by a circle or by
other shapes. List of currently available shapes in IVIS is shown in figure 6.1.
Particular shapes can be addressed by their names. The rest of this section
describes how to use dot shapes in custom components, it is not necessary to
understand it to change the shape of the dots in our components.

Using dot shapes in custom components or visualizations

To use dot shapes in custom components, import dotShapes from the ivis
package. Complete list of the implemented shapes’ names can be found in

29

https://github.com/d3/d3-color
https://github.com/d3/d3-color

circle diamond square square_big triangle

plus cross plus_fat cross_fat circle_empty

diamond_empty square_empty square_big_empty triangle_empty none

Figure 6.1: Dot shapes.

dotShapeNames array, which can be imported from the same package. This ar-
ray can also be used when checking properties with React’s PropTypes by using
PropTypes.oneOf(dotShapeNames).

The shapes are implemented as SVG definitions to be used in <use> element.
Before use, the dot shapes must be set up by adding the following code to the
<svg> element. It is a JSX code snippet.

<defs>
{/* dot shape definitions */}
{dotShapes}

</defs>

Then, an <use> tag can be added to the same <svg> to display the desired
shape. The href attribute of the <use> tag must be set to “#” (hash) followed
by the shape’s name (i.e. one of the elements from dotShapeNames), for example
“#circle”. More information about <defs> and <use> can be found in MDN Web
Docs [11].

All shapes (except “square_big” and “square_big_empty”) are created to
have radius exactly 1 pixel. To enlarge them to desired size, the transform
attribute with scale() value must be added to the <use> tag. We recommend
also including transform-origin as an inline CSS with the same values as are
the x and y position of the <use> element. This makes it easier to control the
behaviour of scaling.

This example creates a circle with radius 10 pixels on specified x and y position
(assuming it is placed inside <svg> tag with definitions as described above):

<use href="#circle" x="50px" y="100px" transform="scale(10)"
style="transform-origin: 50px 100px;" />

6.2 Common properties
Some of the properties serve the same function in more than one component.
Those will be described in this section and later only mentioned in given compo-
nent’s description.

30

6.2.1 Signal configuration
The most important property for all charts in IVIS is the config. It contains
information about the signalSets and signals from which the chart loads the data.
It usually contains the signalSetCid property (identification of the signalSet)
and one or more sigCid properties (identification of the signal).

The config property might also contain information specific for rendering each
of the signalSets, such as colors and labels.

6.2.2 Size and margins
height (number)

The height of the chart in pixels.

margin (object { top, bottom, left, right : number })
Margins of the area in which the chart is displayed, in pixels. The axes of
the chart are drawn inside the margins, so setting the margins to zero will
hide the axes. When specifying margin, all four sides must be set.

The width of components is determined by the width of its parent components
and the browser window. It can also be modified using CSS (see 6.2.3).

6.2.3 CSS
The className and style property are available in most of the components
with the same functionality as they have in React. See React documentation [5,
Styling and CSS] for more information.

className (string)
Name of the CSS class to be applied to the component.

style (object)
Inline CSS to be applied to the component. The names of the properties
are camel cased (instead of standard CSS notation with hyphens).

6.2.4 Enabling features
These properties are boolean values used to enable or disable functionalities in
components.

withZoom (bool)
Enables zooming and panning by mouse and touch. User can enlarge desired
region of the chart.

withBrush (bool)
Enables brush. Brush lets user draw a region with their mouse while holding
the mouse button down. It invokes an action when the mouse button is
released, for example zooming to the selected region.

withTooltip (bool)
Displays tooltip with extra information about the data. The tooltip moves
with cursor and typically shows information about the data points closest
to the cursor.

31

withCursor (bool)
Adds extra visual clues to see where the cursor is. This is usually done by
adding extra lines perpendicular to the axes to the chart.

withTransition (bool)
Enables animations (smooth transitions) of zoom, movement, data update,
etc.

6.2.5 Limits
Setting these props will set the limits (minimum and maximum) of the axes. All
the queries done to fetch data will respect these limits. The initial view of the
chart will be set to these limits.

xMinValue (number)
xMaxValue (number)
yMinValue (number)
yMaxValue (number)

6.2.6 Chart axes
These are properties which affect the axes of the chart.

xAxisTicksCount (integer)
Preferred number of ticks (reference marks) to be displayed along the x-
axis. The real number of rendered ticks might be slightly different in order
to make them more readable. This prop will be passed to d3-axis.ticks.

xAxisTicksFormat (function)
Formatter function for the x-axis ticks. It will receive each tick value and
the value it returns will be rendered as reference mark. This prop will be
passed to d3-axis.tickFormat.

xAxisLabel (string)
Name of the x-axis signal to be displayed under the chart.

yAxisTicksCount (integer)
Analogous to xAxisTicksCount, but for the y-axis.

yAxisTicksFormat (function)
Analogous to xAxisTicksFormat, but for the y-axis.

yAxisLabel (string)
Name of the y-axis signal to be displayed to the left of the chart.

6.2.7 Zoom
These properties control the behaviour of zooming (enlarging region of the chart)
and panning.

withZoom* (bool)

32

https://github.com/d3/d3-axis#axis_ticks
https://github.com/d3/d3-axis#axis_tickFormat

zoomLevelMin (number)
zoomLevelMax (number)

Zoom level is the factor by which the chart is scaled (enlarged). The prop-
erties zoomLevelMin and zoomLevelMax define the minimal and maximal
value of zoom level which can be achieved using mouse wheel, touch pinch
and zoom buttons in the chart’s toolbar. Brushing (selecting a region)
can lead to even higher enlargement. It is not recommended to reduce the
zoomLevelMin below 1.

6.2.8 Setting the visible region
Components with zoom functionality also have a way to set the visible region
from code. It can be done through the setView method. To get the cur-
rently visible region, the getView method can be used. A function passed to
the viewChangeCallback property will get called every time the visible region
changes.

Example on how these methods and properties can be used are shown in
Section 7.5, which describes how to create two charts with synchronized visible
regions.

setView method

The signature of this method is similar in all components:

setView(xMin, xMax, yMin, yMax, source, causedByUser = false)

The first four arguments (in some components only two) are the desired
boundaries of the view. The xMin is the left boundary, xMax right, yMin bot-
tom, yMax top. The values are in the same units as the data, not in pixels.
To keep some of the boundaries unchanged, pass the undefined value as the
corresponding argument.

The source argument should be set to the object which caused this view
change. It is used inside the setView method to prevent updating the view when
the change was caused by the component itself.

The causedByUser is a boolean argument which tells whether the view update
was caused by the user or if it is a result of updating another component. The
value will be passed to the viewChangeCallback call (described below).

getView method

Returns the boundaries of the currently visible region of the chart. The bound-
aries are returned as an object of shape { xMin, xMax, yMin, yMax } with all
fields being numbers or string depending on the data displayed by the chart.

viewChangeCallback property

A function with following signature can be assigned to this property:

function(component, view, causedByUser)

33

It will be called whenever the view is changed.
The first argument is the component whose view was changed. The second

one is the current view (in same format as returned by the getView method).
The last argument is a boolean telling if the view change was caused by user. If
the view change is a result of setView method call, the last argument will be set
to the causedByUser value in that call.

6.3 ScatterPlot component
The ScatterPlot component implements a scatter plot described in more detail
in Section 4.1. The chart is initialized with data from the specified signals. If
the dataset is too large, only a random sample of the data is loaded. The user
can later fetch additional data for a specific region of the chart. The data fetched
during initialization will remain visible to keep the overall picture of the data, but
will be rendered differently than the newly fetched data for the specified region.

The term dot is used in this documentation for visualization of one data point.
It can be represented by a small circle or other shape as described in Section 6.1.2.
We use the term global dot for data points fetched during the initialization of the
chart, i.e. those records which were not fetched additionally by the user for a
specific region of the chart.

6.3.1 Signal configuration
The config property of ScatterPlot has only one field called signalSets which
is an array of signalSet configurations. Each such configuration has the properties
described in the following subsections.

Signals

All signals must be from the same signalSet. All these fields are specified inside
the signalSet configuration in the config.

cid † (string)
SignalSet identifier.

x_sigCid † (string)
Identifier of the signal to be used as horizontal position of the dot.

y_sigCid † (string)
Identifier of the signal to be used as vertical position of the dot.

colorContinuous_sigCid (string)
Identifier of the signal to be used to determine color of the dot. It must be
a numerical (continuous) signal. This property is mutually exclusive with
colorDiscrete_sigCid.

colorDiscrete_sigCid (string)
Identifier of the signal to be used to determine color of the dot. It must
be a categorical (discrete) signal (keyword type in IVIS). This property is
mutually exclusive with colorContinuous_sigCid.

34

tsSigCid (string)
Identifier of the signal defining the date and time of the records. It is used
to filter the data if the component is placed inside a TimeContext.

label_sigCid (string)
Identifier of the signal to be used for labels in tooltip. See also Tooltip
section below (6.3.1).

Rendering

These are properties specific for each signalSet which influence how the data are
rendered. More information about how the final color and size of the dot is
determined is written in sections 6.3.4 (color) and 6.3.3 (size).

color (color or array of colors)
The color of the dots for this signalSet. If not specified, one of the colors
from component’s colors property1 will be used.
If colorContinuous_sigCid or colorDiscrete_sigCid is specified, this
property must be an array (or undefined).

label (string)
Name of the signalSet to be displayed in tooltip, etc.

enabled (bool)
Determines whether the signalSet should be rendered or not. Useful for
example in combination with Legend component as described in example
in Section 7.4.

dotSize (number)
Size (radius) of the dots for this signalSet, in pixels. If not specified, value
of dotSize property of the component2 is used.

dotShape (string, one of dot shape names3) [“circle”]
The name of the shape to be used for displaying dots in chart.

globalDotShape (string, one of dot shape names3) [“circle_empty”]
The name of the shape to be used for displaying global dots in the chart.

getGlobalDotColor (function)
Function to be applied to the color of each global dot before rendering. It is
applied to each dot separately. It takes a color as argument (the color the
dot would have if it wasn’t global) and should return color (which is then
used to render the dot). By default, the opacity of global dots is decreased
to a half.

tooltipLabels (object)
Configuration of the information shown in tooltip, described below in 6.3.1.

regressions (array of objects)
Configuration of regressions shown in the chart, see Section 6.3.1.

1It will be described in Section 6.3.4.
2It will be described in Section 6.3.3.
3See Section 6.1.2.

35

Tooltip

The tooltip can display additional information about the records. For each sig-
nalSet information about the dot closest to the mouse cursor is shown. To enable
tooltip, use the withTooltip property of the ScatterPlot component.

withTooltip* (bool) [true]
This property will get copied to the internal state of the component in the
constructor. Changing it later will not update it. Use setWithTooltip
method4 to change the property after the component was created.

The tooltip displays information about each signalSet. On the first line of the
tooltip text for a signalSet, the label is displayed. Then, the values of signals
are displayed. To change how the signal values are displayed in the tooltip, set
the tooltipLabels property of the signalSet configuration. It has the following
format.

label_format (function)
Function to format the label on the first line of the tooltip. Its arguments
are the signalSet’s label and the value of the label_sigCid signal for the
closest dot to the cursor if defined. The value returned from this function
will be rendered in the tooltip.

x_label (string or function or null)
Label for the signal displayed on x-axis.

y_label (string or function or null)
Label for the signal displayed on y-axis.

color_label (string or function or null)
Label for the signal used for determining the color of the dots.

Each of the properties (except label_format) can be a string or a function.
Setting the property to null will hide information about the corresponding signal
in the tooltip. If the property is set to string, this string is displayed before the
value of the signal with a colon between them. If it is set to a function, the
value will be passed as a parameter to the function and the returned value will
be rendered in the tooltip. It is possible to set only some of the fields mentioned
above, the default values will be used for the unspecified.

Regressions

The regressions can be specified in the regressions* property of the signalSet
configuration. The property accepts an array of regression configurations. Each
such configuration has the following format.

type † (string)
The type of regression to be computed. Currently supported types are
“linear”, “quadratic”, “polynomial”, “loess”, “exponential”, “logarithmic”,
“power”.

4It will be described in Section 6.3.10.

36

color (color or array of colors)
Color of the rendered regression line. If not specified, the color of the
signalSet will be used.

createRegressionForEachColor (bool) [false]
Only valid when colorDiscrete_sigCid is specified. When set to true,
the regression is computed and rendered independently for all records of
each unique value of the colorDiscrete_sigCid signal.

bandwidth (number between 0 and 1)
Only valid for “loess” regression type. Defines the level of smoothing.

order (integer)
Only valid for “polynomial” regression type. Defines the degree of the
polynomial.

Please note that some types of regression (especially high degree polynomials)
can take long time to compute, which will significantly prolong the loading time
of the chart.

To show or hide the coefficients of the regressions, set the withRegression-
Coefficients property of the ScatterPlot component.

withRegressionCoefficients (bool) [true]
If set to true, the coefficients of the computed regressions will be displayed
below the chart.

6.3.2 Limits
To set the maximum number of data points fetched for each signalSet, use the
maxDotCount property of the ScatterPlot component:

maxDotCount (integer) [100]
Maximum number of records to be fetched in one query. This property will
get copied to internal state of the component in the constructor, so changing
it later will not update it. Use setMaxDotCount method5 to change the
property after the component was created.

Setting these props will set the limits (minimum and maximum) of axes. All
the queries done to fetch the data will respect these limits. The initial view of the
chart will be set exactly to these limits (unless xAxisExtentFromSampledData or
yAxisExtentFromSampledData described in Section 6.3.5 are set to true).

xMinValue (number)
xMaxValue (number)
yMinValue (number)
yMaxValue (number)

6.3.3 Dot size
These are the properties of ScatterPlot component which influence the size of
the rendered dots. If dotSize is specified in signalSet configuration, it is used. If
not, the dotSize property of the chart is used.

5It will be described in Section 6.3.10.

37

dotSize (number) [5]
Size (radius) of the dots (circles or other shapes), in pixels. This is used for
signalSets which don’t have dotSize in their configuration.

highlightDotSize (number) [1.2]
Factor by which the radius of highlighted dots is multiplied. Highlighted
dot is the one closest to the mouse cursor. If tooltip is enabled, it shows
information about the data point represented by the highlighted dot.

6.3.4 Dot color
Dot color can be specified using these properties and also those inside the config
property (as describe earlier in Section 6.3.1). Below, we describe how color is
determined.

colors (array of colors) [schemeCategory106]
Colors to be used for dots from signalSets, which don’t have specified color
property in the config. The colors will be taken from this array in the same
order as signalSets have in the config.

minColorValue (number)
maxColorValue (number)

Only valid for signalSets which have colorContinuous_sigCid property
specified. These properties define the minimum and maximum of the do-
main for determining color (if not specified, the domain is inferred from
the data). Color equal to the first element of colors array will be used
for records with colorContinuous_sigCid value equal to minColorValue.
Similarly, the last element of colors array will be used for records with
colorContinuous_sigCid value equal to maxColorValue. If only one of
these properties is specified, the other is inferred from the data.

colorValues (array of strings)
Only valid for signalSets which have colorDiscrete_sigCid property spec-
ified. If the possible outputs of the colorDiscrete_sigCid signal are
known, this property can be used to ensure that the same colors are used
for the same outputs every time. The colors from colors property will be
used for the values specified in colorValues in the same order.

For each signalSet, color of the dots is determined as follows. Always, the
color property from signalSet’s config is preferred. If it is not specified, the
colors property of the component is used.

First, lets assume that neither the colorContinuous_sigCid nor colorDis-
crete_sigCid are specified for the signalSet. If the color property inside the
signalSet’s config is specified, it is used (or its first element if it is an array). Other-
wise the element from the config property of the component with the same index
as this signalSet has in the config is taken. So, when we don’t specify the color
inside config.signalSets, the signalSets will get colors from colors property
of the component in the same order in which they are in config.signalSets.

If colorContinuous_sigCid is specified, the color property in signalSets
in config must be an array or undefined. If it is not, the colors property of the

6See Color Schemes (d3-scale-chromatic) page of D3.js documentation [10] for more details.

38

component is used. A linear interpolator is made from all the colors for values
between the minimum and the maximum of the signal or minColorValue and
maxColorValue props if specified (with all colors evenly spaced). The final color
is then computed using this interpolator.

Similarly, if colorDiscrete_sigCid is defined, each output value of this signal
will get one of the colors (with cyclic indexing if there are more values than
specified colors). The order of the values is not guaranteed by the component if
colorValues property is not specified, so it might change (for example when the
time interval is changed).

6.3.5 Chart axes
These are the properties which affect the axes of the chart.

xAxisExtentFromSampledData (bool) [false]
If set to false, the domain of x-axis is determined by the minimum and
maximum values of the signal, even if the corresponding records were not
retrieved in the fetched sample of data. This can lead to empty space
around the dots, but shows the real extent of the data, including those data
points which were not randomly selected to be displayed.
If set to true, the domain of x-axis is zoomed in to show only the data
displayed in chart and no extra space around. That means, that minimum
and maximum of the fetched sample are used instead of minimum and
maximum of the whole signal.

xAxisTicksCount* (integer)
xAxisTicksFormat* (function)
xAxisLabel* (string)
yAxisExtentFromSampledData (bool) [false]

Analogous to xAxisExtentFromSampledData, but for the y-axis.
yAxisTicksCount* (integer)
yAxisTicksFormat* (function)
yAxisLabel* (string)

6.3.6 Zoom
These properties describe behaviour of the chart when user zooms in.

withZoom* (bool) [true]
zoomLevelMin* (number) [1]
zoomLevelMax* (number) [10]
zoomLevelStepFactor (number) [1.5]

The factor by which zoom level is multiplied (resp. divided) when user clicks
on the Zoom In (resp. Zoom Out) button.

updateColorOnZoom (bool) [false]
If set to true, the minimum and the maximum values of colorContinuous-
_sigCid signal are recomputed based on the currently visible region to
always use the whole range of colors.

39

6.3.7 Brush
A brush can be enabled, so that user can select a region of the chart to zoom
to. The brush is not active by default and must be activated by the user using a
button in toolbar7 or by holding down the control key.

withBrush* (bool) [true]
withAutoRefreshOnBrush (bool) [true]

Brushing automatically fetches new data for the selected region.

6.3.8 Toolbar
A toolbar above the chart can be displayed to allow the user to set the zoom
level, enable brush and set exact boundaries of the visible region. See also the
user guide for toolbar in Section C.3.1.

withToolbar (bool) [true]
Shows a toolbar with buttons above the chart.

withSettings (bool) [true]
The toolbar allows user to alter the configuration of the chart’s properties,
namely the withTooltip, maxDotCount, and the view boundaries can be
set. This option is only valid when withToolbar is set to true.

6.3.9 Common properties
These props, already described in subsections of Section 6.2, are available in the
ScatterPlot component.

height* † (number)
margin* (object { top, bottom, left, right : number }) [{ left: 40, right: 5,

top: 5, bottom: 20 }]
withCursor* (bool) [true]
withTransition* (bool) [true]
viewChangeCallback* (function)
className* (string)
style* (object)

6.3.10 Methods
This is a list of public methods of ScatterPlot component with descriptions of
their arguments.

getView() *
setView(xMin, xMax, yMin, yMax, source, causedByUser = false, with-

Transition = false) *
If withTransition is set to true (and props.withTransition is also
true), the view change will be animated.

7See also 6.3.8.

40

setWithTooltip(newValue : bool)
Sets the value of the withTooltip property.

setMaxDotCount(newValue : integer)
Sets the value of the maxDotCount property.

6.3.11 Advanced configuration
The ScatterPlot component also provides a way to modify the fetching and
the rendering of the data. The following properties can be used to replace the
built-in methods. We recommend seeing the source code of the ScatterPlot and
ScatterPlotBase components as a reference for how these methods are called.

If the desired behaviour is only slightly different to the built-in one, the built-
in methods can also be used inside their replacements. This can be used for
example to save the results of the built-in method and work with them later as
we can see in the example in Section 7.2.2.

The filter property can be used to create more specific queries which retrieve
only a subset of the signalSet.

filter (object or function)
The filter will be added to each data query. If this property is a function,
it will be evaluated with signalSet configuration as an argument and the
result will be used as a filter. Examples of filters can be found in the
getQueriesForSignalSet method in ScatterPlotBase component.

All the following properties are functions which replace the built-in methods.
We only provide a brief description here; the arguments and return values are
documented in the source code.

getQueries (function)
This method prepares queries for retrieving data through the DataAccess.
The built-in implementation first sets the limits based on the visible region
and then calls the getQueriesForSignalSet method for each signalSet and
concatenates the results.

getQueriesForSignalSet (function)
This method creates queries for one signalSet. It gets the config for the
signalSet as one of the arguments.

prepareData (function)
This method is used to process both the records and the extents of data
returned from the server before saving them to component’s state. Calls
the processDocs and computeExtents methods inside.

processDocs (function)
Processes the records returned from server. This method can be used to
alter the returned data. Called from prepareData.

computeExtents (function)
Computes the extent (minimum and maximum) of each signal. Called from
prepareData after processDocs.

41

filterData (function)
Before drawing the chart, the data are filtered so that the dots which would
be outside of the visible region are not rendered.

drawChart (function)
The method for drawing the chart. It calls drawDots for each of the sig-
nalSets. This method can be used to add elements to the chart.

drawDots (function)
This method draws the dots for one signalSet. It can be used to alter the
way the dots are rendered.

drawHighlightDot (function)
The method for highlighting the dot closest to the cursor. It gets called
once for each signalSet. The built-in implementation draws another dot on
top of the original using the drawDots method with darker color.

6.4 BubblePlot component
The BubblePlot component implements a bubble plot, which was described in
Section 4.2. This chart is almost identical to the ScatterPlot with only ad-
ditional possibility to control size of the dots with a signal. We therefore only
describe differences from the scatter plot here.

6.4.1 Signal configuration
Similarly to the ScatterPlot, the config property of BubblePlot has only one
field called signalSets which is an array of signalSet configurations. Each such
configuration has the following properties.

Signals

The properties regarding signal selection in BubblePlot are the same as in
ScatterPlot, described in Section 6.3.1, with addition of the following one.

dotSize_sigCid † (string)
Identifier of the signal to be used to determine the size of the dot. This
will set the area of the dot proportional to the values of this signal, not its
radius, as described in Section 4.2.1.

Rendering

The BubblePlot has the same properties influencing rendering specific for each
signalSet as the ScatterPlot except for the dotSize property, which is removed.
See Section 6.3.1.

Tooltip

All properties described in Section 6.3.1 are also relevant here with addition of a
new field to the tooltipLabels property.

42

dotSize_label (string)
Label of the signal used to determine the size of the dots.

Regressions

These configurations are identical to the ScatterPlot. See Section 6.3.1.

6.4.2 Limits
These configurations are identical to the ScatterPlot. See Section 6.3.2.

6.4.3 Dot size
The size of the dots is determined by the dotSize_sigCid signal for each sig-
nalSet. The following properties influence the final size of the dots.

minDotSize (number) [2]
maxDotSize (number) [14]

Minimum and maximum size (radius) of the dots (circles or other shapes),
in pixels. The minimum dot size corresponds to the minimum value of the
dotSize_sigCid signal or to the value specified in minDotSizeValue. The
maximum dot size corresponds to the maximum value of the signal or to
the maxDotSizeValue.

minDotSizeValue (number)
maxDotSizeValue (number)

If specified, the range for determining minimum and maximum size of the
dots is not inferred from the extent of the dotSize_sigCid signal but is set
to these values. It is also possible to specify only one of these properties.

highlightDotSize* (number) [1.2]

6.4.4 Dot color
These configurations are identical to the ScatterPlot. See Section 6.3.4.

6.4.5 Chart axes
These configurations are identical to the ScatterPlot. See Section 6.3.5.

6.4.6 Zoom
All properties described in Section 6.3.6 can be used. The following one is added.

updateSizeOnZoom (bool) [false]
If set to true, the minimum and maximum values of dotSize_sigCid signal
are recomputed based on the currently visible region to always use the whole
range of sizes.

6.4.7 Brush
These configurations are identical to the ScatterPlot. See Section 6.3.7.

43

6.4.8 Toolbar
These configurations are identical to the ScatterPlot. See Section 6.3.8.

6.4.9 Common properties
These configurations are identical to the ScatterPlot. See Section 6.3.9.

6.4.10 Methods
The public methods are identical to the ScatterPlot. See Section 6.3.10.

6.4.11 Advanced configuration
These configurations are identical to the ScatterPlot. See Section 6.3.11.

6.5 HistogramChart component
This component implements a histogram, which was described in Section 4.3. The
data fetched from the server are the bins covering the full extent of the signal.
Each bin contains number of records belonging to it. The HistogramChart can
only be used for numerical signals.

It is possible to enable a second histogram below the main one for better
control of the zoom. We call this secondary histogram an overview.

6.5.1 Signal configuration
The config property contains information about the signalSet and signal used
to create the histogram. It has following fields.

Signals

All these fields are specified inside the config.

sigSetCid † (string)
SignalSet identifier.

sigCid † (string)
Signal identifier. Only numerical signals are valid.

tsSigCid (string)
Identifier of the signal defining the date and time of the records. It is used
to filter the data if the component is placed inside a TimeContext.

metric_type (string)
If specified, the bucket’s value (height of the corresponding bar) is not the
count of the records belonging to the bucket, but it is computed from the
values of the metric_sigCid signal of the records belonging to the bucket.
Possible values are "sum" (bucket’s value is the sum of the signal values),
"min" (bucket’s value is the minimum of the signal values), "max" (bucket’s

44

value is the maximum of the signal values), "avg" (bucket’s value is the
average of the signal values).

metric_sigCid (string)
Identifier of the signal for the metric_type property.

Rendering

All these fields are specified inside the config.

color † (color)
The color of the bars in the chart.

6.5.2 Bin size
All three of these properties are used to determine the size of the bins (buckets).
They all limit the maximum number of bins, e.g. when minBarWidth is set, the
chart will fetch the highest number of buckets that will fit the chart’s width. All
conditions set by these properties will hold simultaneously for the final number
of buckets.

minStep (number)
Minimal size of the histogram bin, in the units of the data.

minBarWidth (number) [20]
Minimal width of the bars in histogram, in pixels.

maxBucketCount (integer)
The maximum number of histogram bins.

6.5.3 Limits
Setting these props will set the limits (minimum and maximum) of the x-axis.

xMinValue (number)
xMaxValue (number)

6.5.4 Chart axes
These are properties which affect the axes of the chart.

xAxisTicksCount* (integer)
xAxisTicksFormat* (function)
xAxisLabel* (string)

6.5.5 Zoom
withZoom* (bool) [true]
zoomLevelMin* (number) [1]
zoomLevelMax* (number) [4]

45

topPaddingWhenZoomed (number) [0]
A number between 0 and 1 which defines how big portion of the chart will
remain empty when the chart is zoomed and the bars are enlarged. The
bars are never shrunk, so the actual free space might be smaller.
When the user zooms in, all bars are stretched vertically so that the height of
the highest one is at least chartHeight * (1 - topPaddingWhenZoomed),
where chartHeight is the height of the chart reduced by margin.top and
margin.bottom.

6.5.6 Overview
As stated earlier, the overview is a secondary histogram with permanent brush8

that helps user to select the desired visible region of the main chart.

withOverview (bool) [true]
Displays the overview below the chart.

overviewHeight (number) [100]
The height of the overview chart in pixels.

overviewMargin (object { top, bottom, left, right : number }) [{ top: 20,
bottom: 20 }]
Equivalent of the chart’s margin property for the overview. The axis of the
overview is drawn inside the margins, so setting the bottom margin to zero
will hide the axis.

6.5.7 Common properties
These props, already described in subsections of Section 6.2, are available in the
HistogramChart component.

height* † (number)
margin* (object { top, bottom, left, right : number }) [{ left: 40, right: 5,

top: 5, bottom: 20 }]
withCursor* (bool) [true]
withTooltip* (bool) [true]
withTransition* (bool) [true]
viewChangeCallback* (function)
className* (string)
style* (object)

6.5.8 Methods
This is a list of public methods of HistogramChart component with descriptions
of their arguments.

getView() *
setView(xMin, xMax, source, causedByUser = false) *

8See Section C.2.2.

46

6.5.9 Advanced configuration
The HistogramChart component also provides a way to modify the data fetched
from the server before rendering them. The following properties can be used
to replace the built-in methods. We recommend seeing the source code of the
HistogramChart component as a reference for how these methods are called.

If the desired behaviour is only slightly different to the built-in one, the built-
in methods can also be used inside their replacements (see the example in Sec-
tion 7.2.2).

The filter property can be used to create more specific queries which retrieve
only a subset of the signalSet.

filter (object)
The filter will be added to each data query. Examples of filters can be found
in the fetchData method in the HistogramChart component.

All the following properties are functions which replace the built-in methods.
We only provide a brief description here; the arguments and return values are
documented in the source code.

prepareData (function)
This method is used to process the data returned from the server before
saving them to component’s state. It calls the processBucket method
for each of the buckets and then computes the frequencies of the buckets
(heights of the bars) based on their values.

processBucket (function)
This method should return the value of the bucket which is then used to
compute the frequencies of all buckets. The built-in implementation returns
the count of the records inside the bucket if the metric_type is not specified,
and the value of the metric if the metric_type is specified.

6.6 HeatmapChart component
The HeatmapChart is a two dimensional equivalent of the HistogramChart. Many
similar properties will therefore exist. Details about the chart itself can be found
in Section 4.5. One of the difference is that the HeatmapChart can work both
with numerical and discrete signals.

Similarly to the histogram, an overview below the chart can be enabled to
allow easier navigation. In this overview, a marginal histogram is drawn for the
x-axis signal. Additionally, an overview for the y-axis signal can be also added
and will be displayed to the left of the chart.

6.6.1 Signal configuration
The config property contains information about the signalSet and signals used
to create the heatmap.

Signals

All these fields are specified inside the config.

47

sigSetCid † (string)
SignalSet identifier.

x_sigCid † (string)
Horizontal axis signal identifier.

y_sigCid † (string)
Vertical axis signal identifier.

tsSigCid (string)
Identifier of the signal defining the date and time of the records. It is used
to filter the data if the component is placed inside a TimeContext.

metric_type* (string)
metric_sigCid* (string)

Rendering

All these fields are specified inside the config.

colors † (array of colors)
The color spectrum to be used for displaying densities in bins. The first
color will be used for the bin with the smallest count of elements and the
last color will be used for the bin with the highest number of occurrences.
Between those, all colors are linearly interpolated.

6.6.2 Bin size
For numerical signals, the bin sizes are calculated the same way as in histogram
(see Section 6.5.2) with the only difference being that they are set independently
for each of the axes. For discrete signals, at most 10 of the most frequent outputs
will be treated as bins. None of the following properties have any effect for
discrete signals.

minStepX (number)
Minimal size of the bin along the x-axis, in the units of the data.

minStepY (number)
Minimal size of the bin along the y-axis, in the units of the data.

minRectWidth (number) [40]
Minimal width of the rectangles displayed in the heatmap, in pixels.

minRectHeight (number) [40]
Minimal height of the rectangles displayed in the heatmap, in pixels.

maxBucketCountX (integer)
The maximum number of bins along the x-axis.

maxBucketCountY (integer)
The maximum number of bins along the y-axis.

48

6.6.3 Limits
Setting these props will set the limits (minimum and maximum) of axes.

xMinValue (number)
xMaxValue (number)
yMinValue (number)
yMaxValue (number)

6.6.4 Chart axes
These are properties which affect the axes of the chart.

xAxisTicksCount* (integer)
xAxisTicksFormat* (function)
xAxisLabel* (string)
yAxisTicksCount* (integer)
yAxisTicksFormat* (function)
yAxisLabel* (string)

6.6.5 Zoom
The HeatmapChart allows more precise control of the zoom as it can be enabled
independently for each axis.

withZoomX (bool) [true]
withZoomY (bool) [true]

Analogous to withZoom. Enables zooming and panning by mouse and touch
for the axis. User can focus on a desired region of the chart. These two
properties allow to enable zoom for each axis independently.

zoomLevelMin* (number) [1]
zoomLevelMax* (number) [4]

6.6.6 Overviews
The overviews work similarly to the overview of HistogramChart described in
6.5.6. This time however, the brush is optional and the overviews can be drawn
without it just to display the marginal histograms for the data.

withOverviewBottom (bool) [true]
Displays the overview with x-axis histogram below the chart.

withOverviewLeft (bool) [true]
Displays the overview with y-axis histogram to the left of the chart.

withOverviewBottomBrush (bool) [true]
withOverviewLeftBrush (bool) [true]

Displays a brush on top of the overview histogram showing which region
of histogram is currently visible in the heatmap. It also allows the user to
change the visible region.

49

overviewBottomHeight (number) [60]
The height of the x-axis overview chart, in pixels.

overviewLeftWidth (number) [70]
The width of the y-axis overview chart, in pixels.

overviewBottomMargin (object { top, bottom, left, right : number })
[{ top: 0, bottom: 20 }]

overviewLeftMargin (object { top, bottom, left, right : number }) [{ left: 30,
right: 0 }]
Equivalent of the chart’s margin property for the overviews. The axes of
the overviews are drawn inside the margins, so setting the corresponding
margin to zero will hide them.

overviewBottomColor (color)
overviewLeftColor (color)

The color to be used for bars in the overviews. If not specified, the last
element of config.colors is used.

6.6.7 Common properties
These props, already described in subsections of Section 6.2, are available in the
HeatmapChart component.

height* † (number)
margin* (object { top, bottom, left, right : number }) [{ left: 40, right: 5,

top: 5, bottom: 20 }]
withTooltip* (bool) [true]
withTransition* (bool) [true]
viewChangeCallback* (function)
className* (string)
style* (object)

6.6.8 Methods
This is a list of public methods of HeatmapChart component with descriptions of
their arguments.

getView() *

setView(xMin, xMax, yMin, yMax, source, causedByUser = false) *
If the axis data type is keyword, the arguments must be strings and both
boundary values are included in the changed view.

6.6.9 Advanced configuration
Same as in HistogramChart. See Section 6.5.9.

50

6.7 Frequency distribution charts
This section covers charts which are an equivalent of the histogram for discrete
data. The frequency distribution can be displayed using a bar chart or a pie
chart. We discussed these charts in Section 4.4.

6.7.1 FrequencyDataLoader component
The FrequencyDataLoader has the following properties. It fetches the counts of
occurrences for unique outputs of the sigCid. When the data are loaded, the
function specified in the processData property is called.

config † (object)
Configuration of the signals of the component. It has following fields:

sigSetCid † (string)
Identifier of the signalSet.

sigCid † (string)
Identifier of the signal.

tsSigCid † (string)
Identifier of the signal defining the date and time of the records. It is
used to filter the data if the component is placed inside a TimeContext.

maxBucketCount (integer)
Maximum number of unique values to be fetched. The most frequent ones
are retrieved.

processData † (function)
Function which will get called when the results are available. It gets an
object as argument with buckets property, which is an array containing a
key and count for each element.

6.7.2 FrequencyBarChart component
Bar chart is one of the ways to display the frequency distribution. The Frequency-
BarChart combines FrequencyDataLoader and StaticBarChart components. It
has following properties.

config (object)
Identical to the config of the FrequencyDataLoader component as it gets
passed directly into it.

colors (array of colors) [schemeCategory109]
List of colors to be used for bars. To have all bars of the same color, pass
an array with only one element here.

getLabel (fucntion)
Function which will get key and count of each bucket and returns a value
which will be used as the label for the corresponding bar. The default
implementation just returns the key.

9See Color Schemes (d3-scale-chromatic) page of D3.js documentation [10] for more details.

51

getColor (function)
Function to get the color of the bar. It will get called for each bar with
the colors property as its first argument and the index of the bar as the
second one. The default implementation returns the index-th color from
the array (with cyclic indexing for indices higher than number of colors).

maxBucketCount (integer)
Identical to the maxBucketCount of the FrequencyDataLoader component
as it gets passed directly into it.

otherLabel (string) [“Other”]
When maxBucketCount is specified, the number of other records (i.e. those
which didn’t fit into the buckets) is also recorded and displayed. This
property sets the label for the bar displaying those. To completely hide the
bar, set this property to null.

otherColor (color)
Color to be used for the bar displaying record which didn’t fit into any
bucket (described in otherLabel above). If not specified the bar will be
treated as additional bucket (i.e. the getColor function will get called).

The FrequencyBarChart also has the height, margin, padding, withTool-
tip, withTransition and withZoom properties which are directly passed to the
StaticBarChart component. The only one of them not mentioned earlier in
this chapter is the padding property, which accepts a number between 0 and 1
defining the left and right paddings around the bars10.

6.7.3 FrequencyPieChart component
Pie chart is another way of displaying the frequency distribution. The Frequen-
cyPieChart component has the same basic properties as the FrequencyBarChart
described in the previous section.

What differs are the properties passed to the StaticPieChart component
which are height, margin, getArcColor, legendWidth, legendPosition and
legendRowClass. Most of them have default values, so the only one required is
the height.

10See D3.js documentation [10, band.padding in d3-scale] for more details.

52

7. Evaluation – visualization
examples
In this chapter, we evaluate the developed components by creating examples of
visualizations using them. We also try to showcase the possibilities of configura-
tion and cooperation of the components. Here is a list of the examples described
in this chapter.

• Hans Rosling’s bubble plot (7.2) – simple BubblePlot component usage.

• Correlogram (7.3) – shows how to use panel parameters and styles and how
to create many components in a loop.

• Scatter plot with legend (7.4) – cooperation of the new ScatterPlot com-
ponent with the Legend component in IVIS.

• Synchronized views (7.5) – shows how to set the visible region of components
from code.

This chapter assumes that the reader has previous experience with creating
templates in IVIS. We cover the basics of creating and using templates in IVIS in
Appendix D, so we recommended reading it first to the readers without previous
knowledge of IVIS.

All examples created in this chapter can be viewed in an online demo, which
has been set up on https://ivis-mt.smartarch.cz/. To log in, use the user-
name “demo” and password “ivis-MT2020”. The permissions are set up in a way
that allows the demo user to modify templates and panels only in the public
namespace. The demo user also has the view permission for the templates in top
namespace, but in order to modify those, a copy of the template inside the public
namespace must be created. The online demo runs a slightly extended version of
IVIS called FIVIS. All the aspects regarding charts created in this thesis are the
same on both versions.

7.1 Preliminaries
7.1.1 Dataset
The dataset used in the examples below comes from Gapminder, which is an in-
dependent Swedish foundation. Gapminder combines data about world countries
from multiple sources into unique coherent time series. More information about
the foundation can be found on its website [12].

The Gapminder dataset was presented by Hans Rosling in his TED talks such
as The best stats you’ve ever seen and Let my dataset change your mindset.

Gapminder offers many different indicators (signals). Each of the indicators
is a time series with yearly data points and contains information about countries
in the world. The data are provided for free under a CC BY 4.0 licence.

Only a few of the indicators have been selected to be used in this thesis as it is
enough to showcase the components and present the examples. The datasets can

53

https://ivis-mt.smartarch.cz/
https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen
https://www.ted.com/talks/hans_rosling_let_my_dataset_change_your_mindset
https://creativecommons.org/licenses/by/4.0/

be downloaded through Gapminder’s Open Numbers project hosted on GitHub.
Here comes the list of selected indicators with links to their documentation on
Gapminder website, download links, and signal identifiers we chose for them
(identifiers will be needed in examples).
GDP per capita, constant PPP dollars
Signal ID: income_per_person
Documentation: GD001
Download: Open Numbers

“GDP per capita measures the value of everything produced in a country
during a year, divided by the number of people. The unit is in international
dollars, fixed 2011 prices. The data is adjusted for inflation and differences in the
cost of living between countries, so-called PPP dollars.” [12]
Total population
Signal ID: population
Documentation: GD003
Download: Open Numbers
Life expectancy at birth
Signal ID: life_expectancy
Documentation: GD004
Download: Open Numbers
Children per woman (total fertility rate)
Signal ID: fertility_rate
Documentation: GD008
Download: Open Numbers

Apart from the indicators, each record in the signalSet will also have following
signals with general information about the country and a time stamp of the data.
Country name
Signal ID: country

Year
Signal ID: year

Country region
Signal ID: region
Documentation: Four Regions

Data processing and filtering

We decided to filter the data as the complete dataset contains over 85 000 records.
First, all CSV files have been merged into one spreadsheet. As not all of the
indicators have the same domain of countries and years, only records with values
of all indicators have been selected.

To filter the data, we chose to keep only data points of every 10th year between
1900 and 2010. This reduced the size of the dataset to 2232 records. Lastly, the
data were converted to JSON and a header was added as that is the format in
which IVIS API accepts requests. The final data prepared for the API request
can be found in gapminder_filtered_with_header.json file in the dataset
folder in the digital attachment (see Appendix A).

54

https://open-numbers.github.io/
https://www.gapminder.org/data/documentation/gd001/
https://github.com/open-numbers/ddf--gapminder--gdp_per_capita_cppp/blob/master/ddf--datapoints--income_per_person_gdppercapita_ppp_inflation_adjusted--by--geo--time.csv
https://www.gapminder.org/data/documentation/gd003/
https://github.com/open-numbers/ddf--gapminder--population/blob/master/ddf--datapoints--population--by--country--year.csv
https://www.gapminder.org/data/documentation/gd004/
https://github.com/open-numbers/ddf--gapminder--life_expectancy/blob/master/ddf--datapoints--life_expectancy_at_birth--by--geo--time.csv
https://www.gapminder.org/data/documentation/gd008/
https://github.com/open-numbers/ddf--gapminder--fertility_rate/blob/master/ddf--datapoints--children_per_woman_total_fertility--by--country--year.csv
https://www.gapminder.org/fw/four-regions/

The filtered dataset has been loaded to the online demo as top:gapminder
signalSet.

To demonstrate the ability of the charts to render multiple signalSets at the
same time, we decided to also include a few smaller portions of the dataset, each
with entries from only one of the years. These are the signalSets with names
top:gapminder_1950 to top:gapminder_2010 in the demo.

Loading data to IVIS

We used an API specific for FIVIS to load the data into the online demo. A shell
script used for that is also provided in the dataset folder of the digital attach-
ment. Before running the script, the access token and the URL address of the
FIVIS server must be specified.

7.2 Hans Rosling’s bubble plot
Live version: https://ivis-mt.smartarch.cz/workspaces/1/1
Source code: D.2 and also in the online demo

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

40

45

50

55

60

65

70

75

80

1963-10-03 01:00:00 to 1976-03-04 01:00:00

Figure 7.1: Hans Rosling’s bubble plot recreated in IVIS framework.

The first example presented here will be a bubble plot, which Hans Rosling
showed in his TED talk The best stats you’ve ever seen. This chart shows cor-
relation of size of the family (fertility rate) and life expectancy in countries of

55

https://ivis-mt.smartarch.cz/workspaces/1/1
https://ivis-mt.smartarch.cz/settings/templates/1/develop
https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen

the world in time. The size of the bubble represents the population of the coun-
try and its color shows to which region the country belongs (Europe, Americas,
Africa, Asia).

As described earlier in the dataset section, we imported a subset of the Gap-
minder data into the IVIS framework, so we are able to recreate this bubble plot.
Other components of the IVIS framework were also used to enable filtering of
the data by time. Thanks to that, we have a toolbar above the chart which al-
lows us to select the year. Move left and Move right buttons (the two rightmost
icons) will change the time by 10 years (we only have data once every 10 years
as described in 7.1.1, so this will take us exactly to the next point in the time
series).

7.2.1 Code description
We create a React component in which we render a BubblePlot component. The
BubblePlot is placed inside a TimeContext component alongside a TimeRange-
Selector. These two components allow us to filter the data by time. The initial
time interval is set to years 1953 to 1966, so the first records shown in the chart
are those from 1960. The dates were chosen in order to make the Move left and
Move right buttons of TimeRangeSelector move the interval by 10 years (the
time intervals overlap slightly when moving left and right).

The BubblePlot’s config is specified with identifiers of all the necessary
signals. The label_sigCid is set to “country” in order to show the name of the
country in the tooltip.

const cnf = {
signalSets: [{

cid: "top:gapminder",
x_sigCid: "fertility_rate",
...
label_sigCid: "country",

The tooltipLabels except dotSize_label are set to null to hide them in
the tooltip. In dotSize_label, we use the d3-format library to render the country
populations with comma separated thousands.

tooltipLabels: {
x_label: null,
...
dotSize_label: p => "Population: " + d3Format.format(",")(p)

},

We also specify the following properties, which ensure that when the user
refreshes the chart while zoomed in, the global dots (those outside of the visible
region) will be rendered the same way as the newly fetched records when the user
zooms back out.

globalDotShape: "circle",
getGlobalDotColor: color => color

}]
};

56

https://github.com/d3/d3-format

Many of the properties of the BubblePlot component (all of which are de-
scribed in Section 6.4) are set:

• We set maxDotCount to 200 to show all the countries in the dataset at once.
• The xMinValue, xMaxValue, yMinValue, yMaxValue and xAxisLabel,

yAxisLabel properties set the ranges and labels of the axes.
• The colorValues property ensures that the color of the bubbles will remain

the same for the same regions when changing the time interval.
• By setting highlightDotSize to 1, the dot closest to the cursor will not

be enlarged.
• The maxDotSize is the radius of the dot representing the country with the

highest population.

7.2.2 Adding legend
Live version: https://ivis-mt.smartarch.cz/workspaces/1/13
Source code: D.2.2 and also in the online demo

Population:

0 200,000,000 400,000,000 600,000,000

Figure 7.2: Legend for dot sizes for Hans Rosling’s bubble plot.

In order to add a legend for the size of the dots, we use some of the more
advanced configuration options and React’s state variable (see React documen-
tation [5, State and Lifecycle] for more information about state).

We added the computeExtents property to the BubblePlot. This function
is used instead of the built-in way of computing the minima and maxima of the
signals. But as we don’t want to change the way the extents are computed and
only save the computed values, we call the built-in implementation inside our
computeExtents function:

const extents = BubblePlot.computeExtents(base, processedResults,
results, queries, additionalInformation);

The rest of the computeExtents function just saves the minimum and maximum
of the dot size signal to the state.

To draw the legend, we use the d3-scale library to generate nice human-
readable values along the extent of the signal. This is done by first creating a
scaleSqrt object and then calling the ticks method on it. For each of the gener-
ated values we draw an SVG circle (with radius obtained through the scaleSqrt)
and a text with the value.

We also want to show an alternative function for drawing the highlighted dot
(the one closest to the mouse cursor). The drawHighlightDot function in this
example draws a circle with a dark grey stroke instead of darkening the color of
the dot which is done in the built-in function.

57

https://ivis-mt.smartarch.cz/workspaces/1/13
https://ivis-mt.smartarch.cz/settings/templates/10/develop
https://github.com/d3/d3-scale

7.3 Correlogram
Live version: https://ivis-mt.smartarch.cz/workspaces/1/4
Source code: D.3 and also in the online demo

Fertility rate

0 20,000 40,000 60,000 80,000 100,000 120,000

1

2

3

4

5

6

7

35 40 45 50 55 60 65 70 75 80

1

2

3

4

5

6

7

1 2 3 4 5 6 7

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000
110,000
120,000

Income per person

35 40 45 50 55 60 65 70 75 80

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000
110,000
120,000

1 2 3 4 5 6 7

35

40

45

50

55

60

65

70

75

80

85

0 20,000 40,000 60,000 80,000 100,000 120,000

35

40

45

50

55

60

65

70

75

80

85

Life expectancy

Figure 7.3: Correlogram created in IVIS.

Correlogram (also known as scatter plot matrix) is a chart which is composed
of several scatter plots. It can visualize correlation among more than two signals
by creating a scatter plot for each pair. We have described it in Section 4.6.

In this example, we will create a configurable correlogram. This example
builds upon the previous one, so it is recommended to read Section 7.2 first.

7.3.1 Code description
The correlogram template consists of two classes. The first one creates the
Correlogram component, which is then used in the second one. This template
also uses parameters to specify the signals.

Similarly to the first example, we added a TimeContext component inside
the render function of the TestCorrelogram class (which is exported as default
and thus rendered by the template) to filter the data by year. This time, the
TimeRangeSelector will only be rendered if the ts_signal parameter is set for
the panel.

The TestCorrelogram class loads the configuration of the panel and converts
it to a format accepted by the Correlogram class.

The Correlogram class creates a simple correlogram chart. It is a React
component with only the render method. Inside this method, we first prepare
the properties for all the scatter plots (same for all):

• We disable tooltip, regression coefficients and toolbar to keep only the chart.

58

https://ivis-mt.smartarch.cz/workspaces/1/4
https://ivis-mt.smartarch.cz/settings/templates/4/develop

• We also disable zoom and brush for the charts, so the visible region cannot
be changed by the user.

• The xAxisTicksCount is reduced, so that the ticks do not overlap (we use
income per person, which has high values, as one of the signals in the demo).

Then, we go through the signals in two nested loops (using .entries() to
get the indices and values at the same time) and create a scatter plot of the two
signals if they aren’t the same. We also add color and time series signals to the
config of each scatter plot to enable filtering of the data by time and coloring of
the dots using the signal specified in the panel parameters.

We keep the created scatter plots in row and rows arrays. The scatter plots
are then rendered inside a html <table>. On the main diagonal (when we have
the same indices in the loops), we display a <div> with the name of the signal.
These <div>s have their styles defined by a class and also by the styles property,
in which we set the margins to the same values as the margins of the plots to
center the text.

7.4 Scatter plot with legend
Live version: https://ivis-mt.smartarch.cz/workspaces/1/6
Source code: D.4 and also in the online demo

0 20,000 40,000 60,000 80,000 100,000

Income per person

35

40

45

50

55

60

65

70

75

80

85

Li
fe

 e
xp

ec
ta

nc
y

Years
1970

2010

Figure 7.4: Scatter plot with legend and signal selection, created in IVIS.

59

https://ivis-mt.smartarch.cz/workspaces/1/6
https://ivis-mt.smartarch.cz/settings/templates/6/develop

This example shows how to connect the ScatterPlot component to the
Legend component in IVIS to allow the user to select which signalSets are dis-
played.

7.4.1 Code description
The Legend component is not connected to the ScatterPlot, but it rather up-
dates directly the configuration of the panel. We have to specify the identifier
of the parameter modified by the legend in the configPath property and the
structure of the parameter in configSpec. The structure is just a copy of the
specification of the only parameter for this template.

In the render method, we first prepare the config for the scatter plot. Some
of the properties of each signalSetConfig are set to the same values for all the
signalSets. The rest is then added based on the panel configuration. For example,
the enabled property is used to show or hide the specified signal in the chart. It
is set by the checkbox in the legend.

The Legend and the ScatterPlot are then rendered together inside a React
fragment (a way to render two DOM elements at the same time).

7.5 Synchronized views
Live version: https://ivis-mt.smartarch.cz/workspaces/1/5
Source code: D.5 and also in the online demo

0 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000 600,000,000 700,000,000 800,000,000 900,000,000 1,000,000,000 1,100,000,000 1,200,000,000 1,300,000,000

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

110,000

120,000

0 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000 600,000,000 700,000,000 800,000,000 900,000,000 1,000,000,000 1,100,000,000 1,200,000,000 1,300,000,000
0%
10%
20%
30%
40%
50%
60%
70%
80%

0 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000 600,000,000 700,000,000 800,000,000 900,000,000 1,000,000,000 1,100,000,000 1,200,000,000 1,300,000,000

Figure 7.5: Scatter plot and histogram with synchronized views, created in IVIS.

The fourth example will show a more advanced visualization with two charts
with synchronized views. That means that if the user zooms in one chart, the
other chart will update to show the same extent of data.

We selected a scatter plot displaying correlation between country population
and its income per person. We added a histogram below the scatter plot to filter

60

https://reactjs.org/docs/fragments.html
https://ivis-mt.smartarch.cz/workspaces/1/5
https://ivis-mt.smartarch.cz/settings/templates/5/develop

the data by country population. This is a nice example in which we want to filter
our data as we have two outlier values with really high population (China and
India) and most of the data are on the opposite side of the scale. We can now use
the histogram’s overview to easily select the desired region of the scatter plot.

7.5.1 Code description
The setup

This template creates a more advanced React component, which uses state to
store information and automatically update the rendered elements (see React
documentation [5, State and Lifecycle] for more information about state). We
also use a MinMaxLoader component, which retrieves the minimum and maximum
of a signal. This is done to set the scatter plot’s and histogram’s range along the
x-axis to the same values, so the displayed data are aligned nicely. We add a
slight margin to this range using the extentWithMargin method in order to keep
a space between the data and the left axis of the scatter plot.

In the constructor, we initialize the this.state variable to contain xMinValue
and xMaxValue with null values. When the component is first rendered, only
the MinMaxLoader and <div> with text “No data.” is drawn (MinMaxLoader does
not have any UI).

The MinMaxLoader component automatically starts to fetch the data and
when the results are available, it calls the method specified in its processData
property (which is this.processMinMaxResults). That method sets the xMin-
Value and xMaxValue properties of the state variable using React’s setState
method.

When the state is updated, the component is rerendered automatically. This
time, the ScatterPlot and HistogramChart are created and the “No data.” text
is removed.

Views synchronization

There are two interesting properties in both of the charts. The ref property is a
React’s internal property which allows us to save the component into a variable
(see React documentation [5, Refs and the DOM] for more information about
ref). The viewChangeCallback is the one which allows us to synchronize the
views. The method passed to it is called whenever the visible region of the chart
updates. It also indicates whether this change was caused by the user (using
mouse, touch, etc.) or from code, and gives us reference to the object which
called the method. This helps us to prevent an infinite loop of view updates.

In viewChanged method, we call the setView method on both the Scatter-
Plot and the HistogramChart. This method updates the visible region of the
components. Passing undefined as the third and the fourth parameter to the
ScatterPlot’s setView means that we don’t want to change the vertical extent.
The last argument of this method is the object from which the viewChanged
method was called. It is used inside the setView methods to prevent updating
the view when the change was caused by the component itself. We pass the object
we got in the viewChangeCallback (which is one of the charts) there.

61

8. Related work
In this chapter, we would like to shortly present other frameworks, which can
be used when visualizing data. We will focus on three data analysis and visu-
alizing frameworks – Grafana, Kibana and InfluxDB. Kibana is a visualization
framework created by the developers of Elasticsearch. InfluxDB is an alternative
to Elasticsearch for the data storage and querying, which also has visualization
capabilities. Grafana can work on top of both Elasticsearch and InfluxDB (and
also other) data storage engines.

All of the visualization platforms, which we present in this chapter, offer a
graphical user interface for setting up the visualizations. The user selects the
signals, aggregations and all configurations of the chart using their mouse. This
can be really simple for new users and they can learn to create visualizations
really quickly. IVIS has a completely different approach to the creation of visual-
izations. In IVIS, each visualization is a JavaScript class (a React component), so
the template creator has to have at least basic knowledge of programming. The
template can have parameters which can be then specified in the graphical user
interface, so the knowledge of programming is not needed when setting up the
final visualization. This approach offers more possible customizations and advan-
tages in form of using the programming skill to create visualizations, for example
creating many components in a loop as we have seen in example in Section 7.3.

8.1 Grafana
Grafana is an analytics platform for observing metrics and logs. It focuses mainly
on time series data. It was first designed for analysing and visualizing metrics
such as system CPU, memory, disk and I/O utilization.[13] Grafana can use data
from many data sources including Graphite, Elasticsearch and InfluxDB. Many
information about the framework can be found on its website [14].

Figure 8.1: Example of Grafana dashboard. Source: Wikimedia Commons, User:
Linux Screenshots from USA, CC-BY license.

62

https://commons.wikimedia.org/wiki/File:Grafana_dashboard.png
https://commons.wikimedia.org/wiki/File:Grafana_dashboard.png

The approach to creating visualizations is different than in IVIS. The user
first selects the data to query and then the form of presenting them. That can
be a graph, gauge, number, table, etc. When graph is selected, the user can
enable or disable drawing of bars, lines and points independently. At the time
of writing, there were no native charts for displaying correlations of two metrics
in Grafana, although some plugins, which add them to the ecosystem, exist. In
IVIS, the user first has to select the component (usually one type of chart) that
he wants to use for displaying the data. The data source is then specified in the
component’s configuration and the component itself loads the data.

Many custom filters can be used when querying data in Grafana. The results
can also be modified using functions – transformations of the data series – which
can be applied sequentially. Although it is also possible to combine data from
more queries, setting it up in the graphical user interface may take a lot of time.
As all IVIS components are written in JavaScript, they offer the template designer
more freedom in working with the data.

Grafana offers the users lots of configurations of the charts through the graph-
ical user interface and REST API. The charts are then stored in JSON format.
For creating many similar templates, Grafana offers Jsonnet, which is a superset
of JSON with variables, conditions, functions, etc.[15]

One of the advantages of Grafana is a built-in alerting engine that, as written
by Yigal [13], “allows the users to attach conditional rules to dashboard panels
that result in triggered alerts to a notification endpoint of their choice (e.g. email,
Slack, PagerDuty, custom webhooks)”. In IVIS, alerts can be created in the data
processing pipeline (Tasks and Jobs).

8.2 Kibana
Kibana is developed by the same company as Elasticsearch, marketed as “Your
window into the Elastic Stack”. List of the frameworks features and other infor-
mation can be found on its website [16]. Kibana runs on top of Elasticsearch and
is used primarily for analysing log messages. [13]

Figure 8.2: Example of Kibana dashboard. Source: [16]

63

The visualizations can be created similarly to Grafana, using a graphical user
interface. Standard charts like line, area, bar and pie chart are supported. Kibana
also offers charts for visualizing correlations, namely a heatmap. The user can
select what data to plot on the X and Y axis. Custom visualizations can be set
up through Vega visualization grammar (in JSON).

Kibana also supports visualizations of geographical data. The data are drawn
directly on top of a map. This can be used for example to draw points on specific
locations based on the data, or to aggregate the data over a region and then
display the values with different colors for the regions.

Machine learning can be used in Kibana for time series data forecasting and
anomaly detection. This can be connected to trigger an alert when anomaly
occurs.

Besides creating visualizations, direct queries on Elasticsearch can be run from
the Kibana dashboard. This can be used to search and filter the data and view
the records.

8.3 InfluxDB
InfluxDB is a database built for time series data, which is designed to handle high
write and query loads. It is a part of the TICK (Telegraf, InfluxDB, Chronograf,
Kapacitor) stack, which groups together data collection, monitoring and analyt-
ics. More information can again be found on the official website [17].

Figure 8.3: Example of InfluxDB (Chronograf) dashboard. Source: [17]

The user interface for version 1 of InfluxDB is called Chronograf. Its ca-
pabilities are similar to the frameworks mentioned above. It allows to create

64

https://www.elastic.co/guide/en/kibana/current/vega-graph.html

customizable visualizations and execute direct queries on the InfluxDB in data
explorer. When creating multiple similar visualizations, template variables can
be used to allow signal selection directly from the user interface. Chronograf only
supports time series data and doesn’t have any charts to visualize correlations.

Version 2 of InfluxDB (in beta at the time of writing) uses a different front
end called InfluxDB UI. This version has many additional features including na-
tive scatter plot, heatmap and histogram charts. The charts can be set up and
configured through the graphical user interface. The version 2 of InfluxDB also
supports custom user-built visualization templates, but they are only packaged
InfluxDB configurations saved in a file. Although Jsonnet1 can be used to create
InfluxDB templates, it still cannot offer the same capabilities as custom pro-
grammed visualizations in IVIS.

1Mentioned earlier in the Grafana section (8.1). Additional information can also be found
on its website.

65

https://jsonnet.org/

9. Conclusion
As stated in the goals of this thesis, we developed and implemented new compo-
nents for IVIS framework for visualizing correlations of variables and properties
of data distribution.

We first analysed which of these visualizations cannot be created with com-
ponents previously present in IVIS and we proposed new components to be cre-
ated. Namely, we suggested creating components for scatter plot, bubble plot and
heatmap chart for visualizing correlations, and bar chart for visualizing properties
of distribution of discrete data. We also proposed enhancements of the existing
component for histogram chart, which is often used to show properties of dis-
tribution of continuous data. For all these charts, we discussed possible user
interactions, such as zoom to a specified region of the chart, and configurations.

These components were then implemented as React1 components. This in-
cluded understanding of the relevant parts of IVIS framework and the technologies
it uses. We provided code to fetch the data from the IVIS server, process the data,
and then display them as SVG in the web browser using the D3.js2 library. The
components then react to the user input and update accordingly. Some changes
to the server side of the project were also needed in order for the components to
work.

The configurable properties of the newly implemented components were then
described in detail, so that they can be easily used by the template creators
in IVIS in their visualizations. We also evaluated the components by creating
examples of their possible usage. The examples also cover how the components
can be used together with existing parts of the IVIS framework.

All the newly created components have support for zoom, which allows user to
enlarge a region of the chart. When the chart is zoomed in, the user can use mouse
or touch to pan the view. As suggested earlier, histogram chart was enhanced
with zoom too. Furthermore, we implemented the zoom and pan behaviour also
to the line chart in order to ensure unified user experience in all components.

The newly created components are integrated into the IVIS framework so they
can be used in the projects which use the IVIS framework, such as AFarCloud
[18], and FitOptiVis [19].

1The React framework was described in section 2.3.
2The D3.js library was described in section 2.2.

66

Bibliography
[1] SmartArch. IVIS-CORE. URL https://github.com/smartarch/

ivis-core.

[2] Lubomír Bulej, Tomáš Bureš, Petr Hnětynka, Václav Čamra, Petr Siegl,
and Michal Töpfer. IVIS: Highly customizable framework for visualization
and processing of IoT data. In Proceedings of EUROMICRO SEAA 2020,
Portorož, Slovenia. IEEE, 2020. doi: 10.1109/SEAA51224.2020.00095.

[3] Ralf S. Engelschall. ECMAScript 6: New features: Overview & comparison,
2017. URL http://es6-features.org/.

[4] Mike Bostock. D3.js – data-driven documents, 2019. URL https://d3js.
org/.

[5] React developers. React documentation, 2020. URL https://reactjs.
org/docs/.

[6] Elasticsearch developers. Elasticsearch documentation, 2020. URL https:
//www.elastic.co/guide/index.html.

[7] Yan Holtz. From data to viz, 2018. URL https://www.data-to-viz.com/.

[8] Ferdio. Data viz project. URL https://datavizproject.com/.

[9] Datawrapper. Chartable. URL https://blog.datawrapper.de/.

[10] Mike Bostock. D3.js documentation, 2020. URL https://github.com/d3/
d3/wiki.

[11] Mozilla. MDN web docs, 2020. URL https://developer.mozilla.org/
en-US/docs/Web.

[12] Gapminder Foundation. Gapminder. URL https://www.gapminder.org/.

[13] Asaf Yigal. Grafana vs. kibana: The key differences to know. URL https:
//logz.io/blog/grafana-vs-kibana/.

[14] Grafana Labs. Grafana: The open observability platform. URL https:
//grafana.com/.

[15] Joey Bartolomeo. How to configure grafana as code. URL https://
grafana.com/blog/2020/02/26/how-to-configure-grafana-as-code/.

[16] Elasticsearch developers. Kibana: Explore, visualize, discover data. URL
https://www.elastic.co/kibana.

[17] InfluxData. Influxdb: Purpose-built open source time series database. URL
https://www.influxdata.com/.

[18] Aggregate FARming in the Cloud. URL http://www.afarcloud.eu/.

67

https://github.com/smartarch/ivis-core
https://github.com/smartarch/ivis-core
http://es6-features.org/
https://d3js.org/
https://d3js.org/
https://reactjs.org/docs/
https://reactjs.org/docs/
https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/index.html
https://www.data-to-viz.com/
https://datavizproject.com/
https://blog.datawrapper.de/
https://github.com/d3/d3/wiki
https://github.com/d3/d3/wiki
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://www.gapminder.org/
https://logz.io/blog/grafana-vs-kibana/
https://logz.io/blog/grafana-vs-kibana/
https://grafana.com/
https://grafana.com/
https://grafana.com/blog/2020/02/26/how-to-configure-grafana-as-code/
https://grafana.com/blog/2020/02/26/how-to-configure-grafana-as-code/
https://www.elastic.co/kibana
https://www.influxdata.com/
http://www.afarcloud.eu/

[19] From the cloud to the edge – smart IntegraTion and OPtimisationTech-
nologies for highly efficient Image and VIdeo processing Systems. URL
https://fitoptivis.eu/.

68

https://fitoptivis.eu/

List of Figures

3.1 Example of bar chart usage. 12
3.2 Example of histogram usage. 13
3.3 Example of box plot usage. 13
3.4 Example of scatter plot usage. 14
3.5 Example of bubble plot usage. 15

4.1 Scatter plot. 17
4.2 Bubble plot. 19
4.3 Histogram. 20
4.4 Heatmap. 22
4.5 Correlogram. 23

5.1 IVIS framework architecture. 25
5.2 Rescaling of the axis. 26

6.1 Dot shapes. 30

7.1 Hans Rosling’s bubble plot recreated in IVIS framework. 55
7.2 Legend for dot sizes for Hans Rosling’s bubble plot. 57
7.3 Correlogram created in IVIS. 58
7.4 Scatter plot with legend and signal selection, created in IVIS. . . 59
7.5 Scatter plot and histogram with synchronized views, created in IVIS. 60

8.1 Example of Grafana dashboard. 62
8.2 Example of Kibana dashboard. 63
8.3 Example of InfluxDB dashboard. 64

C.1 Example of permanent brush. 74
C.2 Scatter plot toolbar. 74

69

A. Attachments
This is the structure of the digital attachment of this thesis:

• ivis-core – source code of the IVIS framework, details are described in
Appendix B

• dataset – files related to the Gapminder dataset described in Section 7.1.1

70

B. Structure of source code
The source code of this project is available in https://github.com/Mnaukal/ivis-
core/ GitHub repository, which is a fork of the official IVIS framework repository
[1]. All code related to this thesis can be found in correlation_charts branch.
The changes have been merged to the official IVIS-CORE repository in pull re-
quests #12, #20 and #25. The code is also attached to this thesis as mentioned
in the list of attachments (Appendix A).

The main interest of this thesis was in creating new components in the client
side of the project. Each such component is written in its own JavaScript file
with some common code written in additional files. Some changes to the server
side of the project were also needed in order for the components to work.

Here is an excerpt of the project’s source code structure with files relevant to
this thesis.

ivis-core
client..Client related code.

src
ivis

BarChart.js
BubblePlot.js
FrequencyDataLoade.js
FrequencyBarChart.js
FrequencyPieChart.js
HeatmapChart.js
HistogramChart.js
FrequencyPieChart.js
MinMaxLoader.js
ScatterPlot.js
ScatterPlotBase.js..............Common code for ScatterPlot

and BubblePlot.
ivis.js................List of classes exported to the ivis package.
DataAccess.js..............Interface for fetching data into charts.
common.js.......Common code used by more than one component.
dot_shapes.js.....................Implementation of dot shapes.
CorrelationCharts.scss....Stylesheet for all charts in this thesis.

lib
CustomPropTypes.js............Additional property type checkers

for React’s PropTypes [5].
server..Server related code.

lib
indexers

elasticsearch-query.js...........Runs queries on Elasticsearch.
models..Models check the queries before they are passed to the indexer.

signal-sets.js
examples..Examples of templates.

templates

71

https://github.com/Mnaukal/ivis-core/tree/correlation_charts
https://github.com/Mnaukal/ivis-core/tree/correlation_charts

hans_rosling_bubble.......................Code for example in 7.2
jsx.js
jsx_withLegend.js

correlogram................................Code for example in 7.3
jsx.js
params.json
styles.scss

scatterplot_legend........................Code for example in 7.4
jsx.js
params.json

sync_view..................................Code for example in 7.5
jsx.js
params.json

heatmap...........................Code for HeatmapChart example.
jsx.js
params.json

72

C. User guide
This chapter contains the description of the components for users viewing the
visualization and interacting with the charts.

C.1 IVIS introduction
Each visualization in the IVIS framework is drawn inside a panel. The panels
with related visualizations can be grouped together inside a workspace.

Navigating through the IVIS framework website is simple. Workspaces are
listed in the horizontal menu at the top of the page. On a mobile device, the
workspaces menu is accessible through the button in the top right of the page.
Panels from currently selected workspace can be navigated through the menu on
the left.

C.2 Common concepts
Many of the components feature similar interactions. These will be described in
this section.

C.2.1 Zoom
If zoom is enabled for the component, the user can control which region of the
charts is visible. The controls use the standard intuitive concepts. On a desktop
device, mouse wheel can be used to change the scale level of the chart. Then, the
visible region can be panned by clicking and dragging. On a mobile device, pinch
gestures with two fingers can be used to alter the scale.

C.2.2 Brush
Brush is a technique for precise selection of the visible region. There are two
types of brushes used depending on the type of the chart.

Click-and-drag brush

This type of brush is used for example in the scatter plot. When enabled, user
can use the mouse to draw a region on top of the chart. To start drawing the
region, mouse button (or touch) must be pressed and held. Moving the mouse
while holding the button selects the region. A grey rectangle is drawn over the
chart to represent the selected region. When the mouse button is released, the
chart zooms to the selected region and the grey rectangle disappears.

Permanent brush

In histogram and heatmap charts, a different type of brush is used. This brush is
visible for the whole time (again represented by a grey rectangle) in an additional
chart under or to the left of the main chart. The ends of the rectangle have handles

73

which can be used to modify the selected region by dragging them. The whole
rectangle can also be moved by mouse drag.

35 40 45 50 55 60 65 70 75 80

Life expectancy

asia

africa

europe

americas

35 40 45 50 55 60 65 70 75 80

2003-10-30 00:00:00 to 2016-04-01 00:00:00

Figure C.1: Example of permanent brush.

C.2.3 Tooltip
In most of the charts, a tooltip with additional information can be enabled. When
visible, it typically shows information about the data directly below the mouse
cursor or those data points closest to it. The selected data points are usually
highlighted, for example by changing color.

C.3 Scatter and bubble plot
The scatter plot and bubble plot charts come with zoom, click-and-drag brush
and tooltip. All these features can be enabled or disabled by the visualization
creator, so they might not be always available. The brush is initially disabled
and can be enabled using a button in the toolbar or by holding down CTRL key.

C.3.1 Toolbar
If toolbar is enabled for the chart by the visualization creator, it is rendered in
the top right-hand side of the chart. Is shows up to six buttons depending on the
configuration of the chart. The two buttons represented by magnifying glass with
a plus or minus sign can be used to zoom in or out. The Reload data button will
fetch new data for the currently visible region of the chart. The Select area button
enables brush (and disables zoom). This button keeps its state and changes color
when brush is enabled. To disable it, click the button again. The Reset zoom
button will zoom out completely. The Open settings button will open settings
dialog which can be used to alter the current view by settings exact boundaries.

Figure C.2: Scatter plot toolbar. Buttons from left to right: Zoom out, Zoom in,
Reload data, Select area, Reset zoom, Open settings.

C.3.2 Loading data
After a click on the Reload data button, the scatter plot and bubble plot fetch new
data for the currently visible region and display them. The data fetched during
chart’s initialization (without any zoom) might also remain visible depending

74

on the configuration (they will usually be rendered with less opaque color and
possibly be represented by a different shape). All the data fetched for other
specific region will disappear.

C.4 Histogram
The histogram chart has zoom and tooltip enabled by default (although they can
be disabled in configuration). The bars will also get stretched up when the highest
one gets out of the current view; the displayed scale will update accordingly.

When enabled, an additional histogram will appear under the main one. This
additional histogram works as an overview of the data and will not be zoomed. A
permanent brush is drawn on top of the overview histogram to show what range
of data is currently visible in the main histogram.

C.5 Heatmap
The heatmap chart works similarly to the histogram. It can be configured to
show overview histograms along both of the axes. The zoom can be also limited
to only one axis.

C.6 Note on web browser compatibility
The IVIS framework uses modern technologies which might not be available in
all browsers. On desktop, Firefox and Chrome browsers have been tested and
all components should work in them. On mobile devices with Android operating
system, we experienced some problems with zoom in Firefox browser. We thus
recommend using Chrome browser on Android phones.

75

D. Examples of IVIS templates
In this appendix, we add more information to Chapter 7. That includes basics of
creating templates in IVIS and source codes of the examples.

D.1 Creating IVIS templates
First, we provide a tutorial on how to create and render a template in IVIS
framework. This thesis does not focus on the permission system of IVIS, so this
section assumes that the user has all the needed permissions.

To begin, open Settings and navigate to Templates page. Use the Create
Template button and select desired name, description and namespace for the
template. Type should be set to JSX template. To allow the template to use
signals not specified via panel parameters, check the Elevated Access. Elevated
access is needed for most of the examples shown in Chapter 7. Now save the
template.

Using the buttons in the top right-hand corner, navigate to Code editing page.
To create a simple “Hello World!” template, just copy the following JSX code to
the text editor and save it.
'use strict';

import React, {Component} from "react";

export default class HelloWorld extends Component {
constructor(props) {

super(props);
}

render() {
return <div>Hello World!</div>;

}
}

This code creates a React component which will be rendered as a <div>
element in the web browser. For more information on creating React components,
see the React documentation [5].

We have now created an IVIS template and we want to display it. For that,
we need a panel. Panels can be created in Workspaces page in Settings. If there
are no workspaces, create a new one. Then use the Panels icon in the workspace’s
row in the table (the second icon in the rightmost column).

Create a new panel and select the previously created template in the Template
field. The Save and leave button will take you back to the list of panels in your
workspace and clicking on the name of the panel will display it. After a few
seconds, the “Hello World!” text should appear in the browser.

D.1.1 Template parameters
The Parameters tab in the template code editor can be used to specify config-
urable parameters for the template. These parameters can then be set in the
bottom section of panel configuration.

76

Parameters are encoded in JSON format as an array. Each parameter must
contain several properties. The id property will specify identification of the
parameter. We will need the id later to get the parameter’s value. The label
and help texts are shown to the user when specifying the parameters in panel
settings.

The most interesting property is type. It specifies which type of data can
be saved to this parameter. Basic data types such as boolean, string, number,
color, text and also html and json are supported. Advanced types specific for
IVIS are signalSet and signal. We can also set the type property to fieldset,
which will create a nested set of parameters specified in the children property.
This is useful in combination with the cardinality property, which allows us to
determine the number of parameters of the same type (allowing us to get a list
of parameters instead of just one).

If the type property is set to signal, we get a signal picker in the settings. To
determine from which signalSet we want the signal to be picked, we can specify
the signalSet or signalSetRef property. The signalSet is just the identifier
of the signal set. The signalSetRef property defines id of the parameter from
which the signal set identifier should be taken. The example in Section D.3.3
shows, that the signalSetRef can be relative path to the parameter (“sigSet”
in color_signal and ts_signal) or an absolute one (we have to use “/sigSet”
with leading slash in sigCid inside signals fieldset children).

The parameters in example in Section D.3.3 also show the creation of a fieldset
with cardinality of at least two items (with no upper bound). Each item will
consist of a string label and a signal. The last two parameters are optional,
which can be done by setting the cardinality to “0..1” (at least 0, at most 1).

Accessing parameters inside JSX code

To access the parameters, the React component must be decorated with with-
PanelConfig mixin, which is done by adding @withPanelConfig before the class
declaration.

Then, the current configuration of panel parameters can be retrieved by calling
this.getPanelConfig() function. It returns an object with properties named
by the identifiers of the parameters.

To see an example of parameter usage, see the TestCorrelogram class in
Section D.3.

D.1.2 CSS styles in templates
The SCSS tab of the code editor allows us to write CSS styles. The styles must
by imported into the template. To use CSS classes and ids, you must access them
through the styles object:

import styles from './styles.scss';

<div className={styles.label} >

77

D.2 Source code – Hans Rosling’s bubble plot
This is source code for the example described in Section 7.2.

D.2.1 JSX
'use strict';

import React, {Component} from "react";
import {BubblePlot, TimeContext, TimeRangeSelector, IntervalSpec} from "ivis";
import * as d3Format from "d3-format";

export default class HansRoslingBubblePlot extends Component {
constructor(props) {

super(props);
}

render() {
const cnf = {

signalSets: [{
cid: "top:gapminder",
x_sigCid: "fertility_rate",
y_sigCid: "life_expectancy",
colorDiscrete_sigCid: "region",
dotSize_sigCid: "population",
tsSigCid: "year",
label_sigCid: "country",
tooltipLabels: {

x_label: null,
y_label: null,
color_label: null,
dotSize_label: p => "Population: " + d3Format.format(",")(p)

},
dotGlobalShape: "none"

}]
};

return (
<TimeContext initialIntervalSpec={

new IntervalSpec("1953-10-30", "1966-04-01", null, null)}>
<TimeRangeSelector/>
<BubblePlot

config={cnf}
height={600}
margin={{ left: 45, right: 5, top: 5, bottom: 40 }}
maxDotCount={200}
maxDotSize={30}
minDotSizeValue={0}
colorValues={["europe", "americas", "africa", "asia"]}
xMinValue={0.5}
xMaxValue={8.7}
yMinValue={20}
yMaxValue={87}
xAxisLabel={"Fertility rate"}
yAxisLabel={"Life expectancy"}
withToolbar={false}
zoomLevelMax={3}

78

highlightDotSize={1}
/>

</TimeContext>
);

}
}

D.2.2 JSX – with legend
'use strict';

import React, {Component} from "react";
import {BubblePlot, TimeContext, TimeRangeSelector, IntervalSpec} from "ivis";
import * as d3Format from "d3-format";
import * as d3Scale from "d3-scale";

export default class HansRoslingBubblePlot extends Component {
constructor(props) {

super(props);

this.minDotSize = 2;
this.maxDotSize = 30;

this.state = {
minPopulationValue: null,
maxPopulationValue: null

}
}

generateLegend() {
const legend = [];
if (this.state.minPopulationValue === null ||

this.state.maxPopulationValue === null)
return legend;

const sizeScale = d3Scale.scaleSqrt()
.domain([this.state.minPopulationValue, this.state.maxPopulationValue])
.range([this.minDotSize, this.maxDotSize])
.nice();

const ticks = sizeScale.ticks(4);

for (const [i, tick] of ticks.entries()) {
const radius = sizeScale(tick);
legend.push(

<svg key={i} height={2*this.maxDotSize} width={tick === 0 ? 80 : 180}>
<circle cx={radius} cy={this.maxDotSize} r={radius} fill={"#3d3d3d"}/>
<text y={this.maxDotSize} x={2*radius + 10} dominantBaseline="middle">

{d3Format.format(",")(tick)}
</text>

</svg>
);

}
return legend;

}

computeExtents(base, processedResults, results, queries, additionalInformation) {
const extents = BubblePlot.computeExtents(base, processedResults, results,

queries, additionalInformation);

79

const sizeExtent = extents[2];
this.setState({

minPopulationValue: sizeExtent[0],
maxPopulationValue: sizeExtent[1]

});

return extents;
}

drawHighlightDot(base, record, selection, xScale, yScale, sScale, cScale) {
selection.selectAll("circle").remove();
if (record) {

selection.append("circle")
.attr('cx', xScale(record.x))
.attr('cy', yScale(record.y))
.attr("r", sScale(record.s))
.attr("stroke", "#3d3d3d")
.attr("stroke-width", 1)
.attr('fill', cScale(record.d));

}
}

render() {
const cnf = {

signalSets: [{
cid: "top:gapminder",
x_sigCid: "fertility_rate",
y_sigCid: "life_expectancy",
colorDiscrete_sigCid: "region",
dotSize_sigCid: "population",
tsSigCid: "year",
label_sigCid: "country",
tooltipLabels: {

x_label: null,
y_label: null,
color_label: null,
dotSize_label: p => "Population: " + d3Format.format(",")(p)

},
globalDotShape: "circle",
getGlobalDotColor: color => color

}]
};

const legend = this.generateLegend();

return (
<TimeContext initialIntervalSpec={

new IntervalSpec("1953-10-30", "1966-04-01", null, null)}>
<TimeRangeSelector/>
<BubblePlot

config={cnf}
height={600}
margin={{ left: 45, right: 5, top: 5, bottom: 40 }}
maxDotCount={200}
minDotSize={this.minDotSize}
maxDotSize={this.maxDotSize}
colorValues={["europe", "americas", "africa", "asia"]}

80

xMinValue={0.5}
xMaxValue={8.7}
yMinValue={20}
yMaxValue={87}
xAxisLabel={"Fertility rate"}
yAxisLabel={"Life expectancy"}
withToolbar={false}
zoomLevelMax={3}
highlightDotSize={1}
computeExtents={::this.computeExtents}
drawHighlightDot={::this.drawHighlightDot}

/>

<h5>Population:</h5>
<div id={"legend"}

style={{
display: "flex",
justifyContent: "center"

}}>
{legend}

</div>
</TimeContext>

);
}

}

D.3 Source code – Correlogram
This is source code for the example described in Section 7.3.

D.3.1 JSX
'use strict';

import React, {Component} from "react";
import {ScatterPlot, withPanelConfig, TimeContext, IntervalSpec, TimeRangeSelector}

from "ivis";
import styles from './styles.scss';

class Correlogram extends Component {
constructor(props) {

super(props);
}

render() {
const scatterPlotProps = {

withTooltip: false,
withZoom: false,
withRegressionCoefficients: false,
withToolbar: false,
withBrush: false,
height: this.props.height / this.props.config.sigCids.length,
margin: { left: 55, right: 3, top: 5, bottom: 20 },
dotSize: 3,
maxDotCount: 200,
xAxisTicksCount: 8

81

};

const rows = [];
for (const [i, sig1] of this.props.config.sigCids.entries()) {

const row = [];
for (const [j, sig2] of this.props.config.sigCids.entries()) {

if (i !== j) {
const cnf = {

signalSets: [{
cid: this.props.config.sigSetCid,
x_sigCid: sig2,
y_sigCid: sig1,
dotGlobalShape: "none"

}]
};
if (this.props.config.color_sigCid)

cnf.signalSets[0].colorDiscrete_sigCid = this.props.config.color_sigCid;
if (this.props.config.ts_signal)

cnf.signalSets[0].tsSigCid = this.props.config.ts_signal;

row.push(<ScatterPlot config={cnf} {...scatterPlotProps}/>);
}
else

row.push(
<div className={styles.label}

style={{
marginLeft: scatterPlotProps.margin.left,
marginRight: scatterPlotProps.margin.right,
marginTop: scatterPlotProps.margin.top,
marginBottom: scatterPlotProps.margin.bottom}}>

{this.props.config.labels[i]}
</div>);

}
rows.push(row);

}

return (<table><tbody>
{rows.map((r, i) => <tr key={i}>

{r.map((sp, j) => <td key={j}>{sp}</td>)}
</tr>)}

</tbody></table>);
}

}

@withPanelConfig
export default class TestCorrelogram extends Component {

constructor(props) {
super(props);

}

render() {
const config = this.getPanelConfig();

const cnf = {
sigSetCid: config.sigSet,
sigCids: config.signals.map(x => x.sigCid),
labels: config.signals.map(x => x.label),
color_sigCid: config.color_signal,

82

ts_signal: config.ts_signal
};

return (
<TimeContext initialIntervalSpec={

new IntervalSpec("2003-10-30", "2016-04-01", null, null)}>
<Correlogram

config={cnf}
height={700}
margin={{left: 0, right: 0, top: 0, bottom: 0}}

/>
{config.ts_signal && <TimeRangeSelector/>}

</TimeContext>);
}

}

D.3.2 SCSS
.label {

text-align: center;
}

table {
width: 100%;
margin-bottom: 15px;

}

td {
width: 1%; /* trick to make all columns same width */

}

D.3.3 Parameters
[

{
"id": "sigSet",
"label": "Signal Set",
"help": "Select the desired signal set. We recommend the Gapminder dataset for

this template.",
"type": "signalSet"

},
{

"id": "signals",
"label": "Signals",
"cardinality": "2..n",
"type": "fieldset",
"children": [

{
"id": "label",
"label": "Label",
"type": "string"

},
{

"id": "sigCid",
"label": "Signal",
"type": "signal",
"signalSetRef": "/sigSet"

83

}
]

},
{

"id": "color_signal",
"label": "Color signal (category)",
"cardinality": "0..1",
"type": "signal",
"signalSetRef": "sigSet"

},
{

"id": "ts_signal",
"label": "Time series signal",
"cardinality": "0..1",
"type": "signal",
"signalSetRef": "sigSet"

}
]

D.4 Source code – Scatter plot with legend
This is source code for the example described in Section 7.4.

D.4.1 JSX
"use strict";

import React, { Component } from "react";
import { ScatterPlot, Legend, withPanelConfig } from "ivis";

const signalSetsStructure = [
{

labelAttr: 'label',
colorAttr: 'color',
selectionAttr: 'enabled'

}
];

const signalSetsConfigSpec = {
"id": "years",
"type": "fieldset",
"cardinality": "1..n",
"children": [

{
"id": "label",
"label": "Label",
"type": "string"

},
{

"id": "color",
"label": "Color",
"type": "color"

},
{

"id": "enabled",i
"label": "Enabled",

84

"type": "boolean",
"default": true

},
{

"id": "sigSetCid",
"label": "SignalSet",
"type": "signalSet",
"help": "Choose one of the \"top:gapminder_YEAR\" signalSets."

}
]

};

@withPanelConfig
export default class ScatterPlotWithLegend extends Component {

constructor(props) {
super(props);

}

render() {
const config = this.getPanelConfig();

const signalSets = [];
for (const year of config.years) {

let signalSetConfig = {
x_sigCid: "income_per_person",
y_sigCid: "life_expectancy",
label_sigCid: "country",
tooltipLabels: {

label_format: (year, country) => country + ", " + year,
x_label: "Income per person",
y_label: y => "Life expectancy: " + y + " years"

},
regressions: [{type: "linear"}]

};
signalSetConfig.label = year.label;
signalSetConfig.color = year.color;
signalSetConfig.enabled = year.enabled;
signalSetConfig.cid = year.sigSetCid;
signalSets.push(signalSetConfig);

}
const cnf = {

signalSets
};

return (
<>

<Legend label="Years" configPath={['years']} withSelector
structure={signalSetsStructure} withConfiguratorForAllUsers
configSpec={signalSetsConfigSpec}/>

<ScatterPlot
className={"asd"}
config={cnf}
height={500}
margin={{ left: 45, right: 5, top: 5, bottom: 40 }}
maxDotCount={100}
dotSize={4}
xAxisLabel={"Income per person"}
yAxisLabel={"Life expectancy"}

85

/>
</>

);
}

}

D.4.2 Parameters
[

{
"id": "years",
"type": "fieldset",
"cardinality": "1..n",
"children": [

{
"id": "label",
"label": "Label",
"type": "string"

},
{

"id": "color",
"label": "Color",
"type": "color"

},
{

"id": "enabled",
"label": "Enabled",
"type": "boolean",
"default": true

},
{

"id": "sigSetCid",
"label": "SignalSet",
"type": "signalSet",
"help": "Choose one of the \"top:gapminder_YEAR\" signalSets."

}
]

}
]

D.5 Source code – Synchronized views
This is source code for the example described in Section 7.5.

D.5.1 JSX
'use strict';

import React, {Component} from "react";
import {ScatterPlot, HistogramChart, withPanelConfig, TimeContext, IntervalSpec,

TimeRangeSelector, MinMaxLoader} from "ivis";

@withPanelConfig
export default class SynchronizedViews extends Component {

constructor(props) {
super(props);

86

this.state = {
xMinValue: null,
xMaxValue: null

}
}

viewChanged(target, view, causedByUser) {
if (!causedByUser)

return;

this.scatter.setView(view.xMin, view.xMax, undefined, undefined, target);
this.histogram.setView(view.xMin, view.xMax, target);

}

processMinMaxResults(results) {
const config = this.getPanelConfig();
this.setState({

xMinValue: results[config.x_sigCid].min,
xMaxValue: results[config.x_sigCid].max

});
}

extentWithMargin(min, max, margin_percentage) {
const diff = max - min;
const margin = diff * margin_percentage;
return [min - margin, max + margin];

}

render() {
const config = this.getPanelConfig();
const color = "#448e7c";

const scatter_config = {
signalSets: [{

cid: config.sigSet,
x_sigCid: config.x_sigCid,
y_sigCid: config.y_sigCid,
tsSigCid: config.tsSigCid,
label_sigCid: config.label_sigCid,
color: color,
dotGlobalShape: "circle"

}]
};
const histogram_config = {

sigSetCid: config.sigSet,
sigCid: config.x_sigCid,
tsSigCid: config.tsSigCid,
color: color

};
const margin = {

left: 40, right: 5, top: 5, bottom: 20
};
const [xMinValue, xMaxValue] =

this.extentWithMargin(this.state.xMinValue, this.state.xMaxValue, 0.02);

let charts;
if (this.state.xMinValue === null || this.state.xMaxValue === null)

87

charts = <div style={{textAlign: 'center'}}>No data.</div>
else

charts = (<>
<ScatterPlot config={scatter_config}

height={400}
margin={margin}
maxDotCount={200}
dotSize={3}
xMinValue={xMinValue}
xMaxValue={xMaxValue}
withToolbar={false}
viewChangeCallback={::this.viewChanged}
ref={node => this.scatter = node}

/>
<HistogramChart config={histogram_config}

height={200}
margin={margin}
xMinValue={xMinValue}
xMaxValue={xMaxValue}
topPaddingWhenZoomed={0.25}
viewChangeCallback={::this.viewChanged}
ref={node => this.histogram = node}

/>
</>)

return (
<TimeContext initialIntervalSpec={

new IntervalSpec("2003-10-30", "2016-04-01", null, null)}>
<TimeRangeSelector/>

<MinMaxLoader
config={{

sigSetCid: config.sigSet,
sigCids: config.x_sigCid,
tsSigCid: config.tsSigCid

}}
processData={::this.processMinMaxResults}

/>

{charts}
</TimeContext>);

}
}

D.5.2 Parameters
[

{
"id": "sigSet",
"label": "Signal Set",
"help": "Select the desired signal set. We recommend the Gapminder dataset

for this template.",
"type": "signalSet"

},
{

"id": "x_sigCid",
"label": "X axis signal",
"type": "signal",

88

"signalSetRef": "sigSet"
},
{

"id": "y_sigCid",
"label": "Y axis signal",
"type": "signal",
"signalSetRef": "sigSet"

},
{

"id": "tsSigCid",
"label": "Time series signal",
"type": "signal",
"signalSetRef": "sigSet"

},
{

"id": "label_sigCid",
"label": "Labels signal",
"type": "signal",
"signalSetRef": "sigSet",
"cardinality": "0..1"

}
]

89

	Introduction
	Problem statement
	Goals
	Structure of the text

	Technological background
	IVIS framework
	IVIS concepts
	IVIS installation
	Technologies used in IVIS

	D3.js
	React
	JSX

	Elasticsearch

	Analysis
	Visualizing data distribution properties
	Categorical (discrete) data
	Numerical (continuous) data
	Comparing distributions

	Visualizing data correlation
	Two signals
	Three or more signals

	Overview of the solution
	Scatter plot
	Overplotting
	Possible configurations and extensions
	User interactions

	Bubble plot
	Bubble size

	Histogram
	Bin size
	Possible configurations and extensions
	User interactions

	Frequency distribution charts
	Heatmap
	Possible configurations and extensions
	User interactions

	Correlogram

	Implementation
	Zoom
	Two dimensional zoom
	Setting the zoom from code
	Zoom and brush

	Regressions in scatter and bubble plot
	Scatter plot data sampling
	Fetching data for histogram and frequency distribution charts

	Description of components API for template designers
	Common concepts
	Colors
	Dot shapes

	Common properties
	Signal configuration
	Size and margins
	CSS
	Enabling features
	Limits
	Chart axes
	Zoom
	Setting the visible region

	ScatterPlot component
	Signal configuration
	Limits
	Dot size
	Dot color
	Chart axes
	Zoom
	Brush
	Toolbar
	Common properties
	Methods
	Advanced configuration

	BubblePlot component
	Signal configuration
	Limits
	Dot size
	Dot color
	Chart axes
	Zoom
	Brush
	Toolbar
	Common properties
	Methods
	Advanced configuration

	HistogramChart component
	Signal configuration
	Bin size
	Limits
	Chart axes
	Zoom
	Overview
	Common properties
	Methods
	Advanced configuration

	HeatmapChart component
	Signal configuration
	Bin size
	Limits
	Chart axes
	Zoom
	Overviews
	Common properties
	Methods
	Advanced configuration

	Frequency distribution charts
	FrequencyDataLoader component
	FrequencyBarChart component
	FrequencyPieChart component

	Evaluation – visualization examples
	Preliminaries
	Dataset

	Hans Rosling's bubble plot
	Code description
	Adding legend

	Correlogram
	Code description

	Scatter plot with legend
	Code description

	Synchronized views
	Code description

	Related work
	Grafana
	Kibana
	InfluxDB

	Conclusion
	Bibliography
	List of Figures
	Attachments
	Structure of source code
	User guide
	IVIS introduction
	Common concepts
	Zoom
	Brush
	Tooltip

	Scatter and bubble plot
	Toolbar
	Loading data

	Histogram
	Heatmap
	Note on web browser compatibility

	Examples of IVIS templates
	Creating IVIS templates
	Template parameters
	CSS styles in templates

	Source code – Hans Rosling's bubble plot
	JSX
	JSX – with legend

	Source code – Correlogram
	JSX
	SCSS
	Parameters

	Source code – Scatter plot with legend
	JSX
	Parameters

	Source code – Synchronized views
	JSX
	Parameters

